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Next Event Estimation
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• So … sample direct and indirect with 
separate MC integration
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Comparison

Without N.E.E. With N.E.E.

16 samples/pixel
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Direct Illumination
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Direct path generators

Hemisphere sampling

- Le can be 0
- no visibility in

estimator

Surface sampling

- Le can be 0
- 1 visibility term in

estimator

Light source sampling

- Le non-zero
- 1 visibility term in

estimator
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Alternative direct paths

1 path / point 16 paths / point 256 paths / point
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Parameters
• How many paths (“shadow-rays”)?

– Total?
– Per light source? (~intensity, importance, …)

• How to distribute paths within light source?
– Uniform, Solid angle, area
– What about light distribution?
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Parameters
• Multiple lights

– Uniform
– Proportional to power
– Proportional to area
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Formulation over all lights
• When M is large, each direct lighting 

sample is very expensive

• We would like to importance sample the 
lights

• Instead of M integrals

• Formulation over 1 integration domain
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How to sample the lights?
• A discrete pdf pL(ki) picks the light ki

• A surface point is then picked with pdf
p(yi|ki)

• Estimator with N samples:
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Example for 2 lights
• Light 0 has power 1, Light 1 has power 2

• Using power for pdf: 
– pL(L0) = 1/3, pL(L1) = 2/3

• Overall pdf )(
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Example for 2 lights
• Pick a random value: 

• If

• Sample Light 0 and compute estimate e0

• Overall estimate is 
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Example for 2 lights
• If

• Sample Light 1 and compute estimate e1

• Overall estimate is 
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How to sample light?
• Once light is picked, can pick two random 

numbers               according to  pL0(y), 
pL1(y)

• To decrease variance we should reuse

• But, already used information in        to 
pick the light
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Example for 2 lights
• Rescale

• Use                   to pick samples on light 1
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Strategies for picking light

– Uniform

– Area

– Power
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Don’t take visibility into account



9

© Kavita Bala, Computer Science, Cornell University

Direct Illumination
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Research on many lights
• Ward ‘91

• Shirley, Wang, Zimmerman  ‘94

• Fernandez, Bala, Greenberg ‘02

• Wald and Slusallek ’03

• Walter et al.  ‘05
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Stochastic Ray Tracing
• Sample area of light source for direct term

• Sample hemisphere with random rays for 
indirect term

• Optimizations:
– Stratified sampling
– Importance sampling
– Combine multiple probability density functions 

into a single PDF
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• Uniform sampling over the hemisphere
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Sampling strategies
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• Sampling according to the cosine factor
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Sampling strategies
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• Sampling according to the BRDF

)(~)( Ψ↔ΘΘ rfp

Sampling strategies
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Example: sample according to BRDF

• Discrete pdf q1, q2, q3 1321 =++ qqq
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• Sampling according to the BRDF times 
the cosine

θcos)(~)( Ψ↔ΘΘ rfp

Sampling strategies
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Comparison

With importance sampling
(brdf on sphere)

Without importance sampling
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Multi-Importance-Sampling
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Importance Sampling

• Say we want to sample according to 
cosine term, BRDF, ….

• How do we blend the different sampling 
algorithms together?
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Example

• Want to merge both techniques of sampling
– How?
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Balance Heuristic
• Two sampling techniques: jth sample

– X1,j with pdf p1(x), X2,j with pdf p2(x)
– Estimator Yj for jth sample
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Multiple Importance Sampling



16

© Kavita Bala, Computer Science, Cornell University

Efficiency

• Some techniques:
– Importance sampling
– Sampling patterns

Stratified, Quasi-Monte Carlo
– Many others

CostVariance
Efficiency

•
∝

1
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Indirect paths

indirectIllum (x, theta)
est_rad = 0;
if (no absorption) {
for (i=0; i<n; i++)

sample direction psi on hemisphere;
y = trace (x, psi);
est_rad +=(radiance(y,-psi)*BRDF*cos())/p(psi);

est_rad = est_rad / n;
return(est_rad/(1-absorption));

Compute radiance (x, dir){
estRadiance = Le (x, dir);
estRadiance += directIllum (x, dir);
estRadiance += indirectIllum (x, dir);
return estRadiance;

}


