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How to compute?

L(x→Θ) = ?
Check for Le(x→Θ)
Now add Lr(x→Θ) =

Generate random 
directions Ψi
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How to compute? Recursion ...

• Recursion ….

• Each additional bounce 
adds one more level of 
indirect light

• Handles ALL light transport

• “Stochastic Ray Tracing”
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Pixel Anti-Aliasing

• Compute radiance only at 
center of pixel: jaggies

• Simple box filter:

• … evaluate using MC
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Stochastic Ray Tracing

• Parameters?
– # starting rays per pixel
– # random rays for each surface point 

(branching factor)

• Path Tracing
– Branching factor == 1
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Path tracing

1 ray / pixel 10 rays / pixel 100 rays / pixel

• Pixel sampling + light source sampling 
folded into one method
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Comparison

1 centered viewing ray
100 random shadow rays per

viewing ray

100 random viewing rays
1 random shadow ray per

viewing ray
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Performance/Error

• Want better quality with smaller number of 
samples 
– Fewer samples/better performance
– Stratified sampling
– Quasi Monte Carlo: well-distributed samples

• Faster convergence
– Importance sampling: next-event estimation
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Stratified and Importance?
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Higher Dimensions
• Stratified grid sampling:

→ Nd samples

• N-rooks sampling:

→ N samples

•
• • •

• • •
•

• • • •

• • • •

•
•
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Quasi Monte Carlo
• Eliminates randomness to find well-

distributed samples
– Why? Avoid clumping
– Why? Has better convergence properties

Random Stratified Sobol Halton
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Quasi-Monte Carlo (QMC)
• Notions of variance, expected value don’t 

apply: why?

• Introduce the notion of discrepancy
– Discrepancy mimics variance
– Need a low discrepancy sequence
– E.g., subset of unit interval [0,x]

Of N samples, n are in subset
Discrepancy: |x-n/N|

– Mainly: “it looks random”
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Example: Halton
• Radical inverse φp(i) for primes p
• Reflect digits (base p) about decimal point

� φ2(i): 1110102 → 0.010111
• Radical inverse function
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Halton
• Sample: 

– Where b1, b2, b3 are primes

– xi =(φ2(i), φ3(i), φ5(i), φ7(i), φ11(i), ….)

• Discrepancy: 
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Example: Hammersley
• Say we know what N is ahead of time
• For N samples, a Hammersley point 

– (i/N, φ2(i))
• For more dimensions:

– Xi =(i/N, φ2(i), φ3(i), φ5(i), φ7(i), φ11(i), ….)
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Quasi Monte Carlo

• Converges as fast as stratified sampling
– Does not require knowledge about how many 

samples will be used

• Using QMC, directions evenly spaced no 
matter how many samples are used

• Samples properly stratified-> better than 
pure MC
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Performance/Error

• Want better quality with smaller number of 
samples 
– Fewer samples/better performance
– Stratified sampling
– Quasi Monte Carlo: well-distributed samples

• Faster convergence
– Importance sampling: next-event estimation
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Path Tracing

1 sample/pixel 16 samples/pixel 256 samples/pixel

Sample hemisphere

• Importance Sampling: compute direct 
illumination separately!
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Direct Illumination
• Paths of length 1 only, between receiver 

and light source
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Direct Illumination Global Illumination
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Next Event Estimation

Radiance from light sources + radiance from other surfaces
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Next Event Estimation
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• So … sample direct and indirect with 
separate MC integration
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Algorithm
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Algorithm
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Algorithm

→a variant of 
path tracing
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Comparison

Without N.E.E. With N.E.E.

16 samples/pixel
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Rays per pixel

1 sample/
pixel

4 samples/
pixel

16 samples/
pixel

256 samples/
pixel
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Two forms of the RE
• Hemisphere integration

• Area integration (over polygons from set A)
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Direct Illumination
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Generating direct paths
• Pick surface points yi on light source
• Evaluate direct illumination integral
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More points ...

1 shadow ray 9 shadow rays
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Even more points ...

36 shadow rays 100 shadow rays
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Parameters
• How many paths (“shadow-rays”)?

– Total?
– Per light source? (~intensity, importance, …)

• How to distribute paths within light source?
– Uniform, Solid angle, area
– What about light distribution?
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Generating direct paths
• Pick surface points yi on light source
• Evaluate direct illumination integral
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Direct Paths: Using Area Form

1 path / source 9 paths / source 36 paths / source
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Direct Illumination
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Alternative direct paths
• Shoot paths at random over hemisphere; 

check if they hit light source

– paths not used efficiently
– noise in image

– might work if light source 
occupies large portion on 
hemisphere
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Alternative direct paths

1 path / point 16 paths / point 256 paths / point
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Alternative direct paths
• Pick random point on random surface; 

check if on light source and visible to 
target point

– paths not used efficiently
– noise in image

– might work for large 
surface light sources in 
open spaces
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Direct path generators

Hemisphere sampling

- Le can be 0
- no visibility in

estimator

Surface sampling

- Le can be 0
- 1 visibility term in

estimator

Light source sampling

- Le non-zero
- 1 visibility term in

estimator
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Direct paths
• Different path generators produce different 

estimators and different error characteristics
• Direct illumination general algorithm:

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

p = generate_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);
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Parameters
• How many paths (“shadow-rays”)?

– Total?
– Per light source? (~intensity, importance, …)

• How to distribute paths within light source?
– Uniform, Solid angle, area
– What about light distribution?
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How to sample direct illumination
• Sampling a single light source 

• Sampling for many lights
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Estimator for direct lighting
• Pick a point on the light’s surface with pdf

• For N samples, direct light at point x is:
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PDF for sampling light
• Uniform

• Pick a point uniformly over light’s area
– Can stratify samples

• Estimator:
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More points ...

1 shadow ray 9 shadow rays
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Even more points ...

36 shadow rays 100 shadow rays
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Different pdfs
• Solid angle sampling

– Removes cosine and distance from integrand
– Better when significant foreshortening
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Parameters
• Multiple lights

– Uniform
– Proportional to power
– Proportional to area
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Strategies for picking light

– Uniform

– Area

– Power
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Parameters
• Multiple lights

– Uniform
– Proportional to power
– Proportional to area
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Scenes with many lights
• Many lights in scenes: M lights

• How to handle many lights?

• Formulation 1:  M integrals, one per  light
– Same solution technique as earlier for each 

light
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Lighting: point sources

lights

eye

x
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Scenes with many lights
• Various choices:

– Shadow rays per light source
– Distribution of shadow rays within a light 

source

• Total # rays = M N
– Where, M = #lights, N = #rays per source 
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Antialiasing: pixel

lights

eye

pixel
90 rays

• Anti-aliasing: k M N 
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Formulation over all lights
• When M is large, each direct lighting 

sample is very expensive

• We would like to importance sample the 
lights

• Instead of M integrals

• Formulation over 1 integration domain
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Why?
• Do not need a minimum of M rays/sample
• Can use only one ray/sample

• Still need N samples, but 1 ray/sample

• Ray is distributed over the whole 
integration domain
– Can importance sample the lights
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Anti-aliasing

lights

eye

pixel 10 rays 10 rays

• Can piggy-back on the anti-aliasing of pixel

© Kavita Bala, Computer Science, Cornell University

How to sample the lights?
• A discrete pdf pL(ki) picks the light ki

• A surface point is then picked with pdf
p(yi|ki)

• Estimator with N samples:
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Strategies for picking light

– Uniform

– Area

– Power
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Example for 2 lights
• Light 0 has power 1, Light 1 has power 2

• Using power for pdf: 
– pL(L0) = 1/3, pL(L1) = 2/3

• Overall pdf )(
3
2)(

3
1)(
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L0 L1
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Example for 2 lights
• Pick a random value: 

• If

• Sample Light 0 and compute estimate e0

• Overall estimate is 
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Example for 2 lights
• If

• Sample Light 1 and compute estimate e1

• Overall estimate is 

1
3
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How to sample light?
• Once light is picked, can pick two random 

numbers               according to  pL0(y), 
pL1(y)

• To decrease variance we should reuse

• But, already used information in        to 
pick the light
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Example for 2 lights
• Rescale

• Use                   to pick samples on light 1
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Strategies for picking light

– Uniform

– Area

– Power
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Don’t take visibility into account
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Research on many lights
• Ward ‘91

• Shirley, Wang, Zimmerman  ‘94

• Fernandez, Bala, Greenberg ‘02

• Wald and Slusallek ’03

• Walter et al.  ‘05


