Lecture 8: Monte Carlo
Rendering

CS 6620, Spring 2009

Kavita Bala
Computer Science

Cornell University

MC applied to RE

AW

© Kavita Bala, Computer Science, Cornell University




How to compute?

L(x—>0@) =7
Check for L (x—0)
Now add L (x—0) =

Generate random
directions ¥,
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How to compute? Recursion ...

Recursion ....

Each additional bounce
adds one more level of
indirect light

Handles ALL light transport

“Stochastic Ray Tracing”
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Russian Roulette

Integral

Estimator

Variance
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Pixel Anti-Aliasing

» Compute radiance only at
center of pixel: jaggies

» Simple box filter:

e ... evaluate using MC
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Stochastic Ray Tracing

» Parameters?
— # starting rays per pixel
— # random rays for each surface point
(branching factor)

» Path Tracing
— Branching factor ==
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Path tracing

1 ray / pixel 10 rays / pixel 100 rays / pixel

» Pixel sampling + light source sampling
folded into one method
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Comparison

1 centered viewing ray 100 random viewing rays

100 random shadow rays per 1 random shadow ray per
viewing ray viewing ray
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Performance/Error

» Want better quality with smaller number of
samples
— Fewer samples/better performance
— Stratified sampling
— Quasi Monte Carlo: well-distributed samples

e Faster convergence
— Importance sampling: next-event estimation
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Stratified and Importance?

0 X3 Xz X Xpg

Y
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Higher Dimensions

« Stratified grid sampling:

— N9 samples

* N-rooks sampling:

— N samples

© Kavita Bala, Computer Science, Cornell University




Quasi Monte Carlo

 Eliminates randomness to find well-
distributed samples
— Why? Avoid clumping
— Why? Has better convergence properties

.y

Random  Stratified  Sobol Halton
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Quasi-Monte Carlo (QMC)

» Notions of variance, expected value don’t
apply: why?

* Introduce the notion of discrepancy
— Discrepancy mimics variance
— Need a low discrepancy sequence

— E.qg., subset of unit interval [0,X]
= Of N samples, n are in subset
= Discrepancy: [x-n/N|

— Mainly: “it looks random”
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Example: Halton

* Radical inverse ¢,(i) for primes p

» Reflect digits (base p) about decimal point
7 ¢,(i): 111010, — 0.010111

» Radical inverse function
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Halton

e Sample:
— Where by, b,, b; are primes

=% =(92(1), ¢3(1), ¢5(1), ¢7(1), ¢11(1), ---)

» Discrepancy:
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Example: Hammersley

» Say we know what N is ahead of time
* For N samples, a Hammersley point
= (IIN, (1))
* For more dimensions:
= X =N, ¢5(1), 3(1), ¢5(1), ¢7(1), ¢11(0), -...)
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Quasi Monte Carlo

» Converges as fast as stratified sampling

— Does not require knowledge about how many
samples will be used

» Using QMC, directions evenly spaced no
matter how many samples are used

« Samples properly stratified-> better than
pure MC
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Performance/Error

« Want better quality with smaller number of
samples
— Fewer samples/better performance
— Stratified sampling
— Quasi Monte Carlo: well-distributed samples

e Faster convergence
— Importance sampling: next-event estimation
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Path Tracing

Sample hemisphere

s

1 sample/pixel 16 samples/pixel 256 samples/pixel

» Importance Sampling: compute direct
illumination separately!
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Direct lllumination

» Paths of length 1 only, between receiver
and light source
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Direct Illumination Global IHlumination
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Next Event Estimation

J

Radiance from light sources + radiance from other surfaces

<
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Next Event Estimation

* So ... sample direct and indirect with
separate MC integration

© Kavita Bala, Computer Science, Cornell University

12



Algorithm
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Algorithm

© Kavita Bala, Computer Science, Cornell University

13



Algorithm

—a variant of
path tracing
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Comparison

Without N.E.E. With N.E.E.

16 samples/pixel
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Rays per pixel

. sa_mple/ 4 samples/
pixel pixel

16 samples/ 256 samples/
pixel pixel
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Two forms of the RE

* Hemisphere integration

» Area integration (over polygons from set A)
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Direct lllumination

hemisphere integration area integration
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Generating direct paths

 Pick surface points y; on light source
» Evaluate direct illumination integral
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Applied to direct illumination

B 1
Area

source

cosé@, cosd, B
E(X) - Areasource Lsource fr 725\“5()(’ y)

p(Y) 2
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More points ...

1 shadow ray 9 shadow rays

N
E(X) — AreaSOUI’Ce fl' LSOUI’CE Z COS HX COS HY\
: =R

Vis(x, V)
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Even more points ...

36 thQv rays 100 shadow rays
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Parameters

 How many paths (“shadow-rays”)?
— Total?
— Per light source? (~intensity, importance, ...)

» How to distribute paths within light source?
— Uniform, Solid angle, area
— What about light distribution?
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Generating direct paths

* Pick surface points y, on light source
» Evaluate direct illumination integral
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Direct Paths: Using Area Form

VS e

1 path / source 9 paths / source 36 paths / source
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Direct lllumination

hemisphere integration area integration
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Alternative direct paths

» Shoot paths at random over hemisphere;
check if they hit light source

— paths not used efficiently
— noise in image

— might work if light source
occupies large portion on
hemisphere

© Kavita Bala, Computer Science, Cornell University

20



Alternative direct paths

e Ll

1 path / point 16 paths / point 256 paths / point
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Alternative direct paths

» Pick random point on random surface;
check if on light source and visible to
target point

— paths not used efficiently
— noise in image

— might work for large
surface light sources in
open spaces
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Direct path generators

Light source sampling Hemisphere sampling Surface sampling

- L, non-zero -L,canbe0 -L,canbe0
- 1 visibility term in - no visibility in - 1 visibility term in
estimator estimator estimator
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Direct paths

« Different path generators produce different
estimators and different error characteristics

 Direct illumination general algorithm:

compute_radiance (point, direction)
est rad =0;
for (i=0; i<n; i++)
p = generate_path;
est_rad += energy_transfer(p) / probability(p);
est rad =est rad/n;
return(est_rad);
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Parameters

 How many paths (“shadow-rays”)?
— Total?
— Per light source? (~intensity, importance, ...)

» How to distribute paths within light source?
— Uniform, Solid angle, area
— What about light distribution?
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How to sample direct illumination

» Sampling a single light source

o Sampling for many lights
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Estimator for direct lighting

» Pick a point on the light’s surface with pdf

* For N samples, direct light at point x is:
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PDF for sampling light

e Uniform

* Pick a point uniformly over light’s area
— Can stratify samples

* Estimator:
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More points ...

1 shadow ray 9 shadow rays

N cosé, cos ()7

Area ource 2 H \7
E(X) = —= r >ou|ce r IS(X’ y|)
i=1 v
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Even more points ...

36 shadow rays 100 shdow rays

Area N cosd, Cos(i ) B
E(x) = = source. Z Lo 7r Vis(x,V,)
- g
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Different pdfs

» Solid angle sampling

— Removes cosine and distance from integrand
— Better when significant foreshortening
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Parameters

« Multiple lights
— Uniform
— Proportional to power
— Proportional to area
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Strategies for picking light

— Uniform

— Area

— Power
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Parameters

« Multiple lights
— Uniform
— Proportional to power
— Proportional to area

© Kavita Bala, Computer Science, Cornell University

27



Scenes with many lights

* Many lights in scenes: M lights

* How to handle many lights?

* Formulation 1: M integrals, one per light

— Same solution technique as earlier for each
light
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Lighting: point sources

lights

eye
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Scenes with many lights

 Various choices:
— Shadow rays per light source

— Distribution of shadow rays within a light
source

e Total #rays=MN
— Where, M = #lights, N = #rays per source
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Antialiasing: pixel

« Anti-aliasing: k M N

lights
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Formulation over all lights

When M is large, each direct lighting
sample is very expensive

We would like to importance sample the
lights

Instead of M integrals

Formulation over 1 integration domain
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Why?

Do not need a minimum of M rays/sample
Can use only one ray/sample

Still need N samples, but 1 ray/sample

Ray is distributed over the whole
integration domain

— Can importance sample the lights
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Anti-aliasing

» Can piggy-back on the anti-aliasing of pixel
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How to sample the lights?

» A discrete pdf p, (k;) picks the light k;

» A surface point is then picked with pdf
p(yilki)

» Estimator with N samples:
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Strategies for picking light

— Uniform

— Area

— Power
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Example for 2 lights

 Light O has power 1, Light 1 has power 2

» Using power for pdf:
—pu(Lo) = /3, pu(L,) = 2/3

| 1o | L1

0.33

* Overall pdf
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Example for 2 lights

Pick a random value:

°
—

Sample Light 0 and compute estimate e0

Overall estimate is
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Example for 2 lights

e Sample Light 1 and compute estimate el

e QOverall estimate is
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How to sample light?

* Once light is picked, can pick two random
numbers according to p,(Y),

PLa(Y)

* To decrease variance we should reuse

» But, already used information in to
pick the light
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Example for 2 lights

* Rescale

LO | L1 |

0.33

| |/ |

(0.533-0.333)3/2 = .3

» Use to pick samples on light 1
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Strategies for picking light

— Uniform

— Area

— Power

Don’t take visibility into account
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Research on many lights

Ward ‘91

Shirley, Wang, Zimmerman ‘94
Fernandez, Bala, Greenberg ‘02
Wald and Slusallek '03

Walter et al. ‘05
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