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MC Advantages
» Convergence rate of O( - )
* Simple
— Sampling

— Point evaluation
— Can use black boxes
» General
— Works for high dimensions
— Deals with discontinuities, crazy functions,...
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Importance Sampling

* Why do we sample by
P(x)? ]
e Why not just uniformly?

» Better use of samples by
taking more samples in
‘important’ regions, i.e.
where the function is
large
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Non-Uniform Samples

* 1) Choose a normalized
probability density function

p(x)

* 2) Integrate to get a 1
cumulative
distribution function P(x):

0
0 1

e 3) Invert P:
Note this is similar to going
from y axis to x in discrete case!
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Importance Sampling

« General principle:
The closer the shape of p(x) is to the shape
of f(x), the lower the variance

» Variance can also increase if p(x) is chosen
badly
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Cosine distribution
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Rejection Methods

Pick &,, &,

If £, < f(§,), select &,

Is this efficient? What determines
efficiency? A(f)/A(rectangle)
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MC Advantages

Convergence rate of O( - )

Simple

— Sampling

— Point evaluation

— Can use black boxes

General

— Works for high dimensions

— Deals with discontinuities, crazy functions,...
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MC applied to RE
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Radiance Evaluation

« Many different light paths contribute to
single radiance value
— many paths are unimportant

* Tools we need:
— generate the light paths
— sum all contributions of all light paths
— clever techniques to select important paths
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Assumptions: black boxes

e Can query the scene geometry and
materials .

— surface points
P
— light sources /

— visibility checks

— tracing rays V(x,z) =0or 1
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Rendering Equation

function to integrate over all
incoming directions over the
hemisphere around x

Value we want
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How to compute?

L(x—>0@) =7

Check for L (x—0)

Now add L, (x—0) =

© Kavita Bala, Computer Science, Cornell University

How to compute?

* Monte Carlo!

» Generate random directions on
hemisphere Q,, using pdf p(‘¥)
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How to compute?

Generate random
directions ¥,

— evaluate brdf
— evaluate cosine term
— evaluate L(x«¥)
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How to compute?

evaluate L(x<Y¥,)?

Radiance is invariant along
straight paths

vp(Xx, ¥;) = first visible point

LX<} = L(vp(x, V) = ¥)
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How to compute? Recursion ...

Recursion ....

Each additional bounce
adds one more level of
indirect light

Handles ALL light transport -

“Stochastic Ray Tracing”
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When to end recursion?

» Contributions of further light bounces
become less significant

* If we just ignore them, estimators will be
biased!
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Russian Roulette

Integral

Estimator

Variance
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Russian Roulette

* Pick some ‘absorption probability’ o
— probability 1-o that ray will bounce
— estimated radiance becomes L/ (1-a)

 Eg.a=0.9
—only 1 chance in 10 that ray is reflected
— estimated radiance of that ray is multiplied by 10

— instead of shooting 10 rays, we shoot only 1, but
count the contribution of this one 10 times
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Algorithm so far ...

» Shoot viewing ray through each pixel

» Shoot # indirect rays, sampled over
hemisphere

» Terminate recursion using Russian
Roulette
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Algorithm
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Pixel Anti-Aliasing

« Compute radiance only at
center of pixel: jaggies

« Simple box filter:

e ... evaluate using MC
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Stochastic Ray Tracing

» Parameters?
— # starting rays per pixel
— # random rays for each surface point
(branching factor)

» Path Tracing
— Branching factor ==
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Path tracing

1 ray / pixel 10 rays / pixel 100 rays / pixel

» Pixel sampling + light source sampling
folded into one method
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Comparison

1 centered viewing ray 100 random viewing rays
100 random shadow rays per 1 random shadow ray per
viewing ray viewing ray
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Performance/Error

« Want better quality with smaller number of
samples
— Fewer samples/better performance
— Stratified sampling
— Quasi Monte Carlo: well-distributed samples

e Faster convergence
— Importance sampling: next-event estimation
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Stratified Sampling

Samples could be arbitrarily close

Split integral in subparts

Estimator

Variance;
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Numerical example

’\ | MH' \
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o 9 shadow rays - 9 shadow rays
not stratified stratified
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Stratified Sampling

36 shadow rays 36 shadow ray:
not stratified stratified
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Stratified Sampling

100 shadow rays
not stratified stratified
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Stratified and Importance?

[ 1
Fix)
1 —
Uy .
: //
0 X3 Xz X Xpg =
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2 Dimensions

— N2 samples

* Problem for higher dimensions

« Sample points can still be arbitrarily close
to each other
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Higher Dimensions

« Stratified grid sampling:

— N9 samples

* N-rooks sampling:

— N samples
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N-Rooks Sampling - 9 rays

not
stratified

stratified N-Rooks
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N-Rooks Sampling - 36 rays

not
stratified

stratified N-Rooks

Other types of Sampling

* How does it relate to regular sampling

Random sampling Regular sampling
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Quasi Monte Carlo

e Eliminates randomness to find well-

distributed samples
— Why? Avoid clumping

— Why? Has better convergence properties

.y

Random

Stratified  Sob

ol Halton
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Quasi Monte Carlo
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Quasi-Monte Carlo (QMC)

» Notions of variance, expected value don't
apply: why?

* Introduce the notion of discrepancy
— Discrepancy mimics variance
— Need a low discrepancy sequence

— E.g., subset of unit interval [0,X]
= Of N samples, n are in subset
= Discrepancy: |x-n/N|

— Mainly: “it looks random”
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Example: Halton

* Radical inverse ¢,(i) for primes p

» Reflect digits (base p) about decimal point
7 ¢,(i): 111010, — 0.010111

» Radical inverse function
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Halton

e Sample:
— Where b, b,, b; are primes

=X :((I)Z(i)! ¢3(|)1 (I)S(I)! (I)?(I)! (I)ll(i)’ e )

» Discrepancy:
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Example: Hammersley

» Say we know what N is ahead of time

* For N samples, a Hammersley point
— (iI/N, ¢,(1))

e For more dimensions:

= X =(N, ¢2(1), 93(1), ¢5(1), ¢7(1), ¢11(), --..)
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Quasi Monte Carlo

« Converges as fast as stratified sampling

— Does not require knowledge about how many
samples will be used

» Using QMC, directions evenly spaced no
matter how many samples are used

« Samples properly stratified-> better than
pure MC
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Performance/Error

» Want better quality with smaller number of
samples
— Fewer samples/better performance
— Stratified sampling
— Quasi Monte Carlo: well-distributed samples

e Faster convergence
— Importance sampling: next-event estimation
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