
1

Lecture 7: Monte Carlo
Rendering

CS 6620, Spring 2009
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

MC Advantages
• Convergence rate of O()
• Simple

– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
– Deals with discontinuities, crazy functions,…

N
1

2

© Kavita Bala, Computer Science, Cornell University

0 1

)(xf

Importance Sampling

• Why do we sample by
p(x)?

• Why not just uniformly?

• Better use of samples by
taking more samples in
‘important’ regions, i.e.
where the function is
large

© Kavita Bala, Computer Science, Cornell University

• 1) Choose a normalized
probability density function
p(x)

• 2) Integrate to get a
cumulative
distribution function P(x):

• 3) Invert P: 0 1

Non-Uniform Samples

1

0

iξ

ix

)(1 ξ−= Px

∫=
x

dttpxP
0

)()(

Note this is similar to going
from y axis to x in discrete case!

3

© Kavita Bala, Computer Science, Cornell University

Importance Sampling

• General principle:
The closer the shape of p(x) is to the shape
of f(x), the lower the variance

• Variance can also increase if p(x) is chosen
badly

∫
=

D

xf
xfxp

)(
)()(

© Kavita Bala, Computer Science, Cornell University

Cosine distribution

2
1

1

2

2

0 0

2

0

1

0

cos2
2

)(

cos1)(

2
)cos1(sincos),(

sincos),(

sincos1

uu

F

F

drdCDF

p

ddf

ii
−==

=

−=

−==

=

=

∫ ∫

∫ ∫

θπφ
π
φφ

θθ

π
φθθ

π
θθφθ

π
θθφθ

φθθθ
π

θ φ

π

4

© Kavita Bala, Computer Science, Cornell University

Rejection Methods
• Pick ξ1, ξ2

• If ξ2 < f(ξ1), select ξ2

• Is this efficient? What determines
efficiency? A(f)/A(rectangle)

a b

)(xf

∫=
b

a

dxxfI)(

© Kavita Bala, Computer Science, Cornell University

MC Advantages
• Convergence rate of O()

• Simple
– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
– Deals with discontinuities, crazy functions,…

N
1

5

© Kavita Bala, Computer Science, Cornell University

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ+Θ→=Θ→
x

dnxLfxLxL xre ω),cos()()()()(

MC applied to RE

x

L x()← Ψ

L xe ()→ Θ

L x()→ Θ

© Kavita Bala, Computer Science, Cornell University

Radiance Evaluation
• Many different light paths contribute to

single radiance value
– many paths are unimportant

• Tools we need:
– generate the light paths
– sum all contributions of all light paths
– clever techniques to select important paths

6

© Kavita Bala, Computer Science, Cornell University

Assumptions: black boxes
• Can query the scene geometry and

materials

– surface points

– light sources

– visibility checks

– tracing rays

x
N = ?
fr = ?

xn

ΘΨ

?),(=Ψ↔Θxfr

x

?)(=Θ→xLe

xn

Θ

V(x,z) = 0 or 1

© Kavita Bala, Computer Science, Cornell University

Rendering Equation

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ+Θ→=Θ→
x

dnxLfxLxL xre ω),cos()()()()(

∫
Ω

⋅⋅+=
x

re fL cos

function to integrate over all
incoming directions over the
hemisphere around x

Value we want

7

© Kavita Bala, Computer Science, Cornell University

How to compute?

L(x→Θ) = ?

Check for Le(x→Θ)

Now add Lr(x→Θ) = L=?

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ
x

dnxLf xr ω),cos()()(

© Kavita Bala, Computer Science, Cornell University

How to compute?
• Monte Carlo!

• Generate random directions on
hemisphere Ωx, using pdf p(Ψ)

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ=Θ→
x

dnxLfxL xr ω),cos()()()(

∑
= Ψ

Ψ⋅Ψ←⋅Θ↔Ψ
=Θ→

N

i i

xiiir

p
nxLf

N
xL

1)(
),cos()()(1)(

8

© Kavita Bala, Computer Science, Cornell University

How to compute?

Generate random
directions Ψi

– evaluate brdf
– evaluate cosine term
– evaluate L(x←Ψi)

∑
= Ψ

⋅Ψ←⋅
=

N

i i

ir

p
xLf

N
L

1)(
)cos()()(1 KK

© Kavita Bala, Computer Science, Cornell University

How to compute?

• evaluate L(x←Ψi)?

• Radiance is invariant along
straight paths

• vp(x, Ψi) = first visible point

• L(x←Ψi) = L(vp(x, Ψi) → Ψi)

9

© Kavita Bala, Computer Science, Cornell University

How to compute? Recursion ...

• Recursion ….

• Each additional bounce
adds one more level of
indirect light

• Handles ALL light transport

• “Stochastic Ray Tracing”

© Kavita Bala, Computer Science, Cornell University

When to end recursion?

• Contributions of further light bounces
become less significant

• If we just ignore them, estimators will be
biased!

10

© Kavita Bala, Computer Science, Cornell University

P
Pyf)/(

Russian Roulette

Integral

Estimator

Variance

0 1

)(xf

P

∫∫∫ ===
P

dy
P

PyfPdx
P
xfdxxfI

0

1

0

1

0

)/()()(

⎪⎩

⎪
⎨
⎧

>

≤=
.0

,)(

Px

Px
P
xf

I
i

i
i

roulette
 if

 if

σσ >roulette

© Kavita Bala, Computer Science, Cornell University

Russian Roulette

• Pick some ‘absorption probability’ α
– probability 1-α that ray will bounce
– estimated radiance becomes L/ (1-α)

• E.g. α = 0.9
– only 1 chance in 10 that ray is reflected
– estimated radiance of that ray is multiplied by 10
– instead of shooting 10 rays, we shoot only 1, but

count the contribution of this one 10 times

11

© Kavita Bala, Computer Science, Cornell University

Algorithm so far ...
• Shoot viewing ray through each pixel

• Shoot # indirect rays, sampled over
hemisphere

• Terminate recursion using Russian
Roulette

© Kavita Bala, Computer Science, Cornell University

Algorithm

?=L ?=L ?
0

=
=

r

e

L
L

?
0

=
=

r

e

L
L ?=inL ?=inL ?=inL ?=inL

?
0

=
=

r

e

L
L

?
0

=
=

r

e

L
L

?=L ?=L
?=inL ?=inL

?=L ?=L

?
234.1

=
=

r

e

L
L

?
234.1

=
=

r

e

L
L

12

© Kavita Bala, Computer Science, Cornell University

Pixel Anti-Aliasing

• Compute radiance only at
center of pixel: jaggies

• Simple box filter:

• … evaluate using MC

∫=
Pixel

dxxLL)(

© Kavita Bala, Computer Science, Cornell University

Stochastic Ray Tracing

• Parameters?
– # starting rays per pixel
– # random rays for each surface point

(branching factor)

• Path Tracing
– Branching factor == 1

13

© Kavita Bala, Computer Science, Cornell University

Path tracing

1 ray / pixel 10 rays / pixel 100 rays / pixel

• Pixel sampling + light source sampling
folded into one method

© Kavita Bala, Computer Science, Cornell University

Comparison

1 centered viewing ray
100 random shadow rays per

viewing ray

100 random viewing rays
1 random shadow ray per

viewing ray

14

© Kavita Bala, Computer Science, Cornell University

Performance/Error

• Want better quality with smaller number of
samples
– Fewer samples/better performance
– Stratified sampling
– Quasi Monte Carlo: well-distributed samples

• Faster convergence
– Importance sampling: next-event estimation

© Kavita Bala, Computer Science, Cornell University

0 1

)(xf

Stratified Sampling

• Samples could be arbitrarily close

• Split integral in subparts

• Estimator

• Variance:

∑
=

=
N

i i

i
strat xp

xf
N

I
1)(

)(1

secσσ ≤strat

∫∫ ++=
NXX

dxxfdxxfI)()(
1

K

15

© Kavita Bala, Computer Science, Cornell University

Numerical example

© Kavita Bala, Computer Science, Cornell University

Stratified Sampling

9 shadow rays
not stratified

9 shadow rays
stratified

16

© Kavita Bala, Computer Science, Cornell University

Stratified Sampling

36 shadow rays
not stratified

36 shadow rays
stratified

© Kavita Bala, Computer Science, Cornell University

Stratified Sampling

100 shadow rays
not stratified

100 shadow rays
stratified

17

© Kavita Bala, Computer Science, Cornell University

Stratified and Importance?

© Kavita Bala, Computer Science, Cornell University

•
• • •

• • •
•

• • • •

• • • •

→ N2 samples

2 Dimensions

• Problem for higher dimensions

• Sample points can still be arbitrarily close
to each other

18

© Kavita Bala, Computer Science, Cornell University

Higher Dimensions
• Stratified grid sampling:

→ Nd samples

• N-rooks sampling:

→ N samples

•
• • •

• • •
•

• • • •

• • • •

•
•

•

•

© Kavita Bala, Computer Science, Cornell University

N-Rooks Sampling - 9 rays

not
stratified

stratified N-Rooks

19

© Kavita Bala, Computer Science, Cornell University

N-Rooks Sampling - 36 rays

not
stratified

stratified N-Rooks

© Kavita Bala, Computer Science, Cornell University

• How does it relate to regular sampling

Other types of Sampling

Random sampling Regular sampling

20

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo
• Eliminates randomness to find well-

distributed samples
– Why? Avoid clumping
– Why? Has better convergence properties

Random Stratified Sobol Halton

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo

21

© Kavita Bala, Computer Science, Cornell University

Quasi-Monte Carlo (QMC)
• Notions of variance, expected value don’t

apply: why?

• Introduce the notion of discrepancy
– Discrepancy mimics variance
– Need a low discrepancy sequence
– E.g., subset of unit interval [0,x]

Of N samples, n are in subset
Discrepancy: |x-n/N|

– Mainly: “it looks random”

© Kavita Bala, Computer Science, Cornell University

Example: Halton
• Radical inverse φp(i) for primes p
• Reflect digits (base p) about decimal point

� φ2(i): 1110102 → 0.010111
• Radical inverse function

1)()(

)(

−−∑

∑
=Φ

=

j

j
jb

j

j
j

biai

biai

22

© Kavita Bala, Computer Science, Cornell University

Halton
• Sample:

– Where b1, b2, b3 are primes

– xi =(φ2(i), φ3(i), φ5(i), φ7(i), φ11(i), ….)

• Discrepancy:

),...)(),(),((
321

iiix bbbi ΦΦΦ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
N
NO

d)(log

© Kavita Bala, Computer Science, Cornell University

Example: Hammersley
• Say we know what N is ahead of time
• For N samples, a Hammersley point

– (i/N, φ2(i))
• For more dimensions:

– Xi =(i/N, φ2(i), φ3(i), φ5(i), φ7(i), φ11(i), ….)

23

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo

• Converges as fast as stratified sampling
– Does not require knowledge about how many

samples will be used

• Using QMC, directions evenly spaced no
matter how many samples are used

• Samples properly stratified-> better than
pure MC

© Kavita Bala, Computer Science, Cornell University

Performance/Error

• Want better quality with smaller number of
samples
– Fewer samples/better performance
– Stratified sampling
– Quasi Monte Carlo: well-distributed samples

• Faster convergence
– Importance sampling: next-event estimation

