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Rendering
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MC Advantages
• Convergence rate of O(      )
• Simple

– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
– Deals with discontinuities, crazy functions,…
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Importance Sampling

• Why do we sample by 
p(x)?

• Why not just uniformly?

• Better use of samples by 
taking more samples in 
‘important’ regions, i.e. 
where the function is 
large
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• 1) Choose a normalized
probability density function 
p(x)

• 2) Integrate to get a 
cumulative
distribution function P(x):

• 3) Invert P: 0 1

Non-Uniform Samples
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Note this is similar to going 
from y axis to x in discrete case!



3

© Kavita Bala, Computer Science, Cornell University

Importance Sampling

• General principle:
The closer the shape of p(x) is to the shape 
of f(x), the lower the variance

• Variance can also increase if p(x) is chosen 
badly
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Cosine distribution
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Rejection Methods
• Pick ξ1, ξ2

• If ξ2 < f(ξ1), select ξ2

• Is this efficient? What determines 
efficiency? A(f)/A(rectangle)
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MC Advantages
• Convergence rate of O(      )

• Simple
– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
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MC applied to RE
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L x( )← Ψ

L xe ( )→ Θ

L x( )→ Θ
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Radiance Evaluation
• Many different light paths contribute to 

single radiance value
– many paths are unimportant

• Tools we need:
– generate the light paths
– sum all contributions of all light paths
– clever techniques to select important paths
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Assumptions: black boxes
• Can  query the scene geometry and 

materials

– surface points

– light sources

– visibility checks

– tracing rays
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Rendering Equation
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function to integrate over all
incoming directions over the
hemisphere around x

Value we want
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How to compute?

L(x→Θ) = ?

Check for Le(x→Θ)

Now add Lr(x→Θ) = L=?

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ
x

dnxLf xr ω),cos()()(

© Kavita Bala, Computer Science, Cornell University

How to compute?
• Monte Carlo!

• Generate random directions on 
hemisphere Ωx, using pdf p(Ψ)
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How to compute?

Generate random 
directions Ψi

– evaluate brdf
– evaluate cosine term
– evaluate L(x←Ψi)
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How to compute?

• evaluate L(x←Ψi)?

• Radiance is invariant along 
straight paths

• vp(x, Ψi) = first visible point

• L(x←Ψi) = L(vp(x, Ψi) → Ψi)
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How to compute? Recursion ...

• Recursion ….

• Each additional bounce 
adds one more level of 
indirect light

• Handles ALL light transport

• “Stochastic Ray Tracing”
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When to end recursion?

• Contributions of further light bounces 
become less significant

• If we just ignore them, estimators will be 
biased!
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Russian Roulette

• Pick some ‘absorption probability’ α
– probability 1-α that ray will bounce
– estimated radiance becomes L/ (1-α)

• E.g. α = 0.9
– only 1 chance in 10 that ray is reflected
– estimated radiance of that ray is multiplied by 10
– instead of shooting 10 rays, we shoot only 1, but 

count the contribution of this one 10 times
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Algorithm so far ...
• Shoot viewing ray through each pixel

• Shoot # indirect rays, sampled over 
hemisphere

• Terminate recursion using Russian 
Roulette
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Algorithm
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Pixel Anti-Aliasing

• Compute radiance only at 
center of pixel: jaggies

• Simple box filter:

• … evaluate using MC
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Stochastic Ray Tracing

• Parameters?
– # starting rays per pixel
– # random rays for each surface point 

(branching factor)

• Path Tracing
– Branching factor == 1
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Path tracing

1 ray / pixel 10 rays / pixel 100 rays / pixel

• Pixel sampling + light source sampling 
folded into one method
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Comparison

1 centered viewing ray
100 random shadow rays per

viewing ray

100 random viewing rays
1 random shadow ray per

viewing ray
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Performance/Error

• Want better quality with smaller number of 
samples 
– Fewer samples/better performance
– Stratified sampling
– Quasi Monte Carlo: well-distributed samples

• Faster convergence
– Importance sampling: next-event estimation
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Stratified Sampling

• Samples could be arbitrarily close

• Split integral in subparts

• Estimator

• Variance:
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Numerical example
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Stratified Sampling 

9 shadow rays
not stratified

9 shadow rays
stratified
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Stratified Sampling 

36 shadow rays
not stratified

36 shadow rays
stratified
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Stratified Sampling 

100 shadow rays
not stratified

100 shadow rays
stratified
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Stratified and Importance?
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•
• • •

• • •
•

• • • •

• • • •

→ N2 samples

2 Dimensions

• Problem for higher dimensions

• Sample points can still be arbitrarily close 
to each other
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Higher Dimensions
• Stratified grid sampling:

→ Nd samples

• N-rooks sampling:

→ N samples

•
• • •

• • •
•

• • • •

• • • •

•
•

•

•
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N-Rooks Sampling - 9 rays 

not
stratified

stratified N-Rooks



19

© Kavita Bala, Computer Science, Cornell University

N-Rooks Sampling - 36 rays 

not
stratified

stratified N-Rooks

© Kavita Bala, Computer Science, Cornell University

• How does it relate to regular sampling

Other types of Sampling

Random sampling Regular sampling
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Quasi Monte Carlo
• Eliminates randomness to find well-

distributed samples
– Why? Avoid clumping
– Why? Has better convergence properties

Random Stratified Sobol Halton
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Quasi Monte Carlo
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Quasi-Monte Carlo (QMC)
• Notions of variance, expected value don’t 

apply: why?

• Introduce the notion of discrepancy
– Discrepancy mimics variance
– Need a low discrepancy sequence
– E.g., subset of unit interval [0,x]

Of N samples, n are in subset
Discrepancy: |x-n/N|

– Mainly: “it looks random”
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Example: Halton
• Radical inverse φp(i) for primes p
• Reflect digits (base p) about decimal point

� φ2(i): 1110102 → 0.010111
• Radical inverse function
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Halton
• Sample: 

– Where b1, b2, b3 are primes

– xi =(φ2(i), φ3(i), φ5(i), φ7(i), φ11(i), ….)

• Discrepancy: 
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Example: Hammersley
• Say we know what N is ahead of time
• For N samples, a Hammersley point 

– (i/N, φ2(i))
• For more dimensions:

– Xi =(i/N, φ2(i), φ3(i), φ5(i), φ7(i), φ11(i), ….)
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Quasi Monte Carlo

• Converges as fast as stratified sampling
– Does not require knowledge about how many 

samples will be used

• Using QMC, directions evenly spaced no 
matter how many samples are used

• Samples properly stratified-> better than 
pure MC
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Performance/Error

• Want better quality with smaller number of 
samples 
– Fewer samples/better performance
– Stratified sampling
– Quasi Monte Carlo: well-distributed samples

• Faster convergence
– Importance sampling: next-event estimation


