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Monte Carlo Integration

• Numerical tool to evaluate integrals

• Use sampling

• Stochastic errors

• Unbiased
– on average, we get the right answer!
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Continuous random variable

• Expected value: 

• Variance:

• Deviation: 
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More than one sample
• Consider the weighted sum of N samples

• Expected value

• Variance

• Deviation       
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More samples
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Secondary estimator

Variance

Generate N random samples xi

Estimator:
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Monte Carlo Integration
• Expected value of estimator

– on ‘average’ get right result: unbiased

• Standard deviation σ is a measure of the 
stochastic error
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Convergence Rates
• RMS error converges at a rate of O(       )
• Unbiased
• Chebychev’s inequality

• Strong law of large numbers
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Monte Carlo Integration - 2D
• MC Integration works well for higher 

dimensions
• Unlike quadrature
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MC Advantages
• Convergence rate of O(      )
• Simple

– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
– Deals with discontinuities, crazy functions,…
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Importance Sampling

• Why do we sample by 
p(x)?

• Why not just uniformly?

• Better use of samples by 
taking more samples in 
‘important’ regions, i.e. 
where the function is 
large
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MC integration - Non-Uniform

• Some parts of the integration domain have 
higher importance

• Generate samples according to density 
function p(x)

• Estimator?

• What is optimal p(x)?
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MC integration - Non-Uniform
• Generate samples according to density 

function p(x)

• Why?

• But…..
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Example
• Function: 8
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How to sample according to pdf?
• Consider discrete events xi

– with probability pi

• Select xi if:
p1 + … pi-1 < ξ < p1 + … pi-1 + pi
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• 1) Choose a normalized
probability density function 
p(x)

0 1

Non-Uniform Samples
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• 1) Choose a normalized
probability density function 
p(x)

• 2) Integrate to get a 
cumulative probability
distribution function P(x):

0 1

Non-Uniform Samples
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• 1) Choose a normalized
probability density function 
p(x)

• 2) Integrate to get a 
cumulative
distribution function P(x):

• 3) Invert P: 0 1

Non-Uniform Samples
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from y axis to x in discrete case!
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• This transforms uniform 
samples into non-
uniform samples!

• Why?

• Need:
– CDF P(x)
– Inverse CDF: P-1

Non-Uniform Samples
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Importance Sampling

• General principle:
The closer the shape of p(x) is to the shape 
of f(x), the lower the variance

• Variance can also increase if p(x) is chosen 
badly
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Numerical Example
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Monte Carlo Integration - 2D
• MC Integration works well for higher 

dimensions
• Unlike quadrature
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Example: How to sample p(x)
• Area of a circle:

• Uniform sampling of r and θ

• Equal area sampling of r and θ
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Example: How to sample p(x)
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MC Integration - 2D example
• Integration over hemisphere:
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Hemisphere Integration example
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Cosine distribution
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Rejection Methods
• Pick ξ1, ξ2

• If ξ2 < f(ξ1), select ξ2

• Is this efficient? What determines 
efficiency? A(f)/A(rectangle)
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MC Advantages
• Convergence rate of O(      )

• Simple
– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
– Deals with discontinuities, crazy functions,…

N
1


