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Monte Carlo Integration

Numerical tool to evaluate integrals

Use sampling

Stochastic errors

Unbiased
— on average, we get the right answer!
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Continuous random variable

Expected value:

Variance:

Deviation:
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More than one sample

Consider the weighted sum of N samples

Expected value

Variance

Deviation
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More samples

Secondary estimator

Generate N random samples Xx;

Estimator:
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Variance
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Monte Carlo Integration

» Expected value of estimator

—on ‘average’ get right result: unbiased

» Standard deviation ¢ is a measure of the
stochastic error
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Convergence Rates

RMS error converges at a rate of O(
Unbiased
Chebychev’s inequality

Strong law of large numbers
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Monte Carlo Integration - 2D

* MC Integration works well for higher
dimensions

» Unlike quadrature
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MC Advantages

e Convergence rate of O( - )
e Simple

— Sampling

— Point evaluation

— Can use black boxes
* General

— Works for high dimensions

— Deals with discontinuities, crazy functions,...
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Importance Sampling

 Why do we sample by
p(x)? ]
* Why not just uniformly?

» Better use of samples by
taking more samples in
‘important’ regions, i.e.
where the function is
large
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MC integration - Non-Uniform

Some parts of the integration domain have
higher importance

Generate samples according to density
function p(x)

Estimator?

What is optimal p(x)?
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MC integration - Non-Uniform

Generate samples according to density
function p(x)

Why?
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Example

e Function:
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How to sample according to pdf?

« Consider discrete events x. 06

— with probability p;

: 01 01
» Select x;if:

Prt . P <E<pt..pt pi‘

X1 Xp X3 X4

Sum(p)
g
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Non-Uniform Samples

» 1) Choose a normalized
probability density function

P(X)

p(x)
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Non-Uniform Samples

* 1) Choose a normalized
probability density function

p(x) )

» 2) Integrate to get a
cumulative probability

e : p(x)
distribution function P(x):

0
0

Note this is similar to computing
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Non-Uniform Samples

» 1) Choose a normalized
probability density function

p(x)

» 2) Integrate to get a 1
cumulative
distribution function P(x):

0

* 3) Invert P: ° '

Note this is similar to going
from y axis to x in discrete case!
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Non-Uniform Samples

* This transforms uniform
samples into non- 1
uniform samples!

* Whyf) 0, : 1

* Need:
— CDF P(x)
— Inverse CDF; P!
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Importance Sampling

« General principle:
The closer the shape of p(x) is to the shape
of f(x), the lower the variance

» Variance can also increase if p(x) is chosen
badly

Numerical Example
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Monte Carlo Integration - 2D

* MC Integration works well for higher
dimensions

* Unlike quadrature
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Example: How to sample p(x)

e Area of a circle:

» Uniform sampling of r and 6

* Equal area sampling of r and 6 m
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Example: How to sample p(x)

Equal area sampling

i
A
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MC Integration - 2D example

* Integration over hemisphere:
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Hemisphere Integration example

Irradiance due to light source:
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Cosine distribution
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Rejection Methods

Pick &,, &,

If £, < f(§,), select &,

Is this efficient? What determines
efficiency? A(f)/A(rectangle)
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MC Advantages

Convergence rate of O( - )

Simple

— Sampling

— Point evaluation

— Can use black boxes

General
— Works for high dimensions

— Deals with discontinuities, crazy functions,...
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