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Outline
• Light sources

– Light source characteristics
– Types of sources

• Light reflection
– Physics-based models
– Empirical models
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Sources of light radiation
• Thermal radiation (“blackbody”)

– Sun, tungsten & tungsten-halogen lamps; arc lamps

• Electric discharge
– gas discharge lamps (neon, sodium, mercury vapor)
– arc lamps, fluorescent lamps

• Other phenomena
– fluorescence (fluorescent lamps, fluorescent dyes)
– phosphorescence (CRTs); LEDs; lasers
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Modeling luminaires
• Spectral distribution

– Determined by physics of source
– Generally tabulated, often RGB used

• Spatial distribution
– Modeled as point or simple area light
– Also light probes create high dynamic range inputs

• Directional distribution
– Often shaped by reflectors
– Tabulated when necessary, cosine lobe is common 

approximation
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Directional distributions

Lambertian cosine-power arbitrary
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Lighting w/ Environment Maps
• High lighting complexity

• Rich: captures real world
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Image-based lighting
• Acquiring lighting information of real 

scenes
– Image-based techniques

• Use light probe

• Varying exposure
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Mirror Ball
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Sphere Maps
• Assume viewing is from infinity
• Creation uses photographs or ray tracing 

or warping
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Environment Mapping
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Sphere Environment Mapping
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Types of Mappings

Sphere mapping

Cube  mapping
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Dynamic Range of Sun
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Multiple Exposures
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Light interaction with matter
• Volumetric scattering: interaction in 3D

– Atmosphere, water, semi-transparent objects

• Surface scattering: interaction in 2D
– Surfaces of mainly opaque materials
– The common case in many scenes
– Heavily relied upon for graphics

© Kavita Bala, Computer Science, Cornell University

Surface reflective characteristics
• Spectral distribution

– Responsible for surface color
– Tabulate in independent wavelength bands, or RGB

• Spatial distribution
– Material properties vary with surface position
– Texture maps

• Directional distribution
– BRDF — more complex than source
– Tabulation is impractical because of dimensionality
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Directional Distribution
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Reflectance—Three Forms

Ideal diffuse 
(Lambertian)

Directional
diffuse

Ideal
specular
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Ideal Diffuse Reflection
• Characteristic of multiple scattering 

materials
• An idealization but reasonable for matte 

surfaces
• Basis of most radiosity methods
• BRDF is a constant function
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Directional Diffuse Reflection
• Characteristic of most rough surfaces
• Described by the BRDF
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Ideal Specular Reflection
• Calculated from Fresnel’s equations
• Exact for polished surfaces
• Basis of early ray-tracing methods
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Fresnel Reflection
• Considers light as electromagnetic wave

• Polarization: rotation of electric field

• Effect of Fresnel reflection:
– Most objects act as mirror reflectors when light 

strikes them at grazing angles
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Grazing Angle

Real photographsReal photographs
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Fresnel Equations
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Fresnel Reflectance
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• Equations apply for metals and nonmetals
– for metals, use complex index η = n+ik
– for nonmetals, k=0
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Metal vs. Nonmetal
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Fresnel Equations



16

© Kavita Bala, Computer Science, Cornell University

Mies van der Rohe’s unbuilt Courtyard House
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Directional Reflectance
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Classes of Models for the BRDF
• Plausible simple functions

– Phong 1975;

• Physics-based models
– Cook/Torrance, 1981; He et al. 1992; 

• Empirically-based models
– Ward 1992, Lafortune model
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The Blinn-Phong Model
Half-Vector
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The Modified Blinn-Phong Model
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The Phong Model
• Computationally simple
• Visually pleasing
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Phong: Reality Check

Real photographsReal photographs
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Phong: Reality Check
Real photographs

Phong model

Therefore, physically-based models
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Physics-based modelPhong model

Phong: Reality Check

• Computationally simple, visually pleasing 
• Doesn’t represent physical reality

– Energy not conserved
– Not reciprocal (can be fixed with modification)
– Maximum always in specular direction
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Cook-Torrance BRDF Model
• A microfacet model

– Surface modeled as random collection of 
planar facets

– Incoming ray hits exactly one facet, at random
• Input: probability distribution of facet angle
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Result of Cook-Torrance
• Plastic has substrate that is white with 

embedded pigment particles
– Colored diffuse component
– White specular component

• Metal 
– Specular component depends on metal
– Negligible diffuse component
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Rob Cook’s vases

Source: Cook, Torrance 1981
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Cook-Torrance BRDF Model
• A microfacet model

– Surface modeled as random collection of 
planar facets

– Incoming ray hits exactly one facet, at random
• Input: probability distribution of facet angle
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Facet Reflection
• H vector used to define facets that 

contribute
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Fresnel Reflectance

Cook-Torrance BRDF Model

• “Specular” term (really directional diffuse)

• Fresnel reflectance for smooth facet
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Cook-Torrance BRDF Model
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Facet distribution
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Facet Distribution
• D function describes distribution of H
• Formula due to Beckmann

– derivation based on Gaussian height 
distribution
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Cook-Torrance BRDF Model
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Masking/shadowing
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Masking
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Self-Shadowing
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Masking and Shadowing
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Rob Cook’s vases

Source: Cook, Torrance 1981
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Classes of Models for the BRDF
• Plausible simple functions

– Phong 1975;

• Physics-based models
– Cook/Torrance, 1981; He et al. 1992; 

• Empirically-based models
– Ward 1992, Lafortune model
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Measured BRDFs

White paint

Commercial aluminum

Blue paint

Blue plastic
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Empirical BRDF Representation
• Generalized Phong model (Lafortune

1997)
• Used to represent:

– Measured data
– Wave optics reflectance model

• Features:
– Efficient and compact
– Easily added to rendering algorithms
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Ward Model
• Physically valid

– Energy conserving
– Satisfies reciprocity:  

• Based on empirical data
• Isotropic and anisotropic materials

)()( irrrir ff Θ→Θ=Θ→Θ
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Ward Model: Isotropic

• where, 
– α is surface roughness
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Ward Model: Anisotropic

• where, 
– αx, αy are surface roughness in
– are mutually perpendicular to the normal
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Examples

(0.1, 0.1) (0.1, 0.2)

Images: Simon Premoze

(0.1, 0.5)

(0.1, 1.0)(0.2, 0.2)
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Teapot
(0.15, 0.5) (0.5, 0.15)

(0.3, 0.3)
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Conclusions
• Light modeling and BRDF modeling

• Shading models:
– Physically-based model: Cook-Torrance
– Empirically-based model: Ward

– Recent work
anisotropic Cook-Torrance[SIG’08]


