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Radiometry

• Radiometry: measurement of light energy

• Defines relation between
– Power
– Energy
– Radiance
– Radiosity
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Hemispherical coordinates

• Defined a measure over hemisphere
• dω = direction vector
• Differential solid angle
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Radiance

• Radiance is radiant energy at x in 
direction θ: 5D function
– : Power

per unit projected surface area
per unit solid angle

– units: Watt / m2.sr
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Why is radiance important?

• Invariant along a straight line (in vacuum)
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Why is radiance important? 

• Response of a sensor (camera, human 
eye) is proportional to radiance

• Pixel values in image proportional to 
radiance received from that direction

eye
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Relationships
• Radiance is the fundamental quantity

• Power:

• Radiosity:  
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Outline

• Light Model

• Radiance

• Materials: Interaction with light

• Rendering equation
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Materials - Three Forms

Ideal diffuse 
(Lambertian)

Ideal
specular

Directional
diffuse
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Reflectance—Three Forms

Ideal diffuse 
(Lambertian)

Directional
diffuse

Ideal
specular
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• Bidirectional Reflectance Distribution 
Function

BRDF
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Definition of BRDF
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• 6D function? 4D function?
– Why?

• Wavelength-dependent
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BRDF special case: ideal diffuse

Pure Lambertian
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Properties of the BRDF

• Reciprocity:

• Therefore, notation:

• Important for bidirectional tracing
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Properties of the BRDF
• Bounds:
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• Energy conservation:
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Outline

• Light Model

• Radiance

• Materials: Interaction with light

• Rendering equation
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Light Transport
• Goal

– Describe steady-state radiance distribution in 
scene

• Assumptions:
– Geometric Optics
– Achieves steady state instantaneously

• Related:
– Neutron Transport (neutrons)
– Gas Dynamics (molecules)
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Radiance represents equilibrium
• Radiance values at all points in the scene 

and in all directions expresses the 
equilibrium

• 4D function: only on surfaces
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Rendering Equation (RE)
• RE describes energy transport in scene

• Input
– Light sources
– Surface geometry
– Reflectance characteristics of surfaces

• Output: value of radiance at all surface 
points in all directions
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Rendering Equation
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Rendering Equation
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Rendering Equation
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Rendering Equation
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Rendering Equation
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Rendering Equation
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Summary

• Geometric Optics

• Goal: 
– to compute steady-state radiance values in 

scene

• Rendering equation: 
– mathematical formulation of problem that global 

illumination algorithms must solve
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RE: Area Formulation
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Ray-casting function: what
is the nearest visible surface
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)),(()(
),(

Ψ−→Ψ=Ψ←
Ψ=

xvpLxL
xvpy

x

y

∫
Ω

Ψ⋅⋅Ψ←⋅Θ↔Ψ+Θ→=Θ→
x

dxLfxLxL xre ωθcos)()()()(

© Kavita Bala, Computer Science, Cornell University

∫
Ω

Ψ⋅⋅Ψ←⋅Θ↔Ψ+Θ→=Θ→
x

dxLfxLxL xre ωθcos)()()()(

Rendering Equation

dAy

Ψωd

Ψ

x

2

cos

xy

yy

r
dA

d
θ

ω =Ψ

),( Ψ= xvpy

)),(()( Ψ−→Ψ=Ψ← xvpLxL



15

© Kavita Bala, Computer Science, Cornell University

Rendering Equation: visible surfaces
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• Integration domain extended to ALL surface 
points by including visibility function
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Two forms of the RE
• Hemisphere integration

• Area integration (over polygons from set A)
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Lighting Cues

glossy reflection

refraction

soft shadow

color bleeding

Global Illumination is important for realism
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Light Sources and Reflection 
Models
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Outline
• Light sources

– Light source characteristics
– Types of sources

• Light reflection
– Physics-based models
– Empirical models
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Sources of light radiation
• Thermal radiation (“blackbody”)

– Sun, tungsten & tungsten-halogen lamps; arc lamps

• Electric discharge
– gas discharge lamps (neon, sodium, mercury vapor)
– arc lamps, fluorescent lamps

• Other phenomena
– fluorescence (fluorescent lamps, fluorescent dyes)
– phosphorescence (CRTs); LEDs; lasers
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Modeling luminaires
• Spectral distribution

– Determined by physics of source
– Generally tabulated, often RGB used

• Spatial distribution
– Modeled as point or simple area light
– Also light probes create high dynamic range inputs

• Directional distribution
– Often shaped by reflectors
– Tabulated when necessary, cosine lobe is common 

approximation
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Directional distributions

Lambertian cosine-power arbitrary
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Lighting w/ Environment Maps
• High lighting complexity

• Rich: captures real world
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Image-based lighting
• Acquiring lighting information of real 

scenes
– Image-based techniques

• Use light probe

• Varying exposure


