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Many Lights
• Most techniques work for a single light source

• Many light sources
– For environment maps
– For indirect illumination

• Treat it is a single integration domain
– Importance sample lights
– Importance sampling (with visibility) still hard problem
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Research on many lights
• Ward ‘91

• Shirley, Wang, Zimmerman  ‘94

• Fernandez, Bala, Greenberg ’02
– Donikian, Fernandez.. ‘06

• Lightcuts ‘05
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Shirley, Wang, Zimmerman ‘94
• Try to avoid linear cost of evaluating lights
• Separate lights into 

– Set of important lights (a small set)
– Set of  “dim” lights (large set)

• Construct pdf using: 
– all important lights 
– 1 out of all the dim lights

• Importance sample these lights
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Shirley, Wang, Zimmerman ‘94
• Region of influence for important lights

– Octree cells in region of influence have light in 
important set

• However, the partitioning into important 
and dim sets remains hard

• Also, still are not taking visibility into 
account
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Lightcuts [SIGGRAPH ’05,’06] 
• Walter, Fernandez, Arbree, Bala
• Efficient, accurate complex illumination

Environment map lighting & indirect
Time 111s

Textured area lights & indirect
Time 98s

(640x480, Anti-aliased, Glossy materials)
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Scalable
• Scalable solution for many point lights

– Thousands to millions
– Sub-linear cost
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• Approach: unify illumination 
– Area lights
– HDR environment maps
– Sun & sky light
– Indirect illumination

• Convert to point lights

GI as many-point lights

dlL(...)P = ∫
+ )( directindirecthemisphere

Kitchen light: area, sun/sky, indirect

∑
∈

=
allLightsi

ii Ik
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Convert Illumination
• HDR environment map

– Apply captured light to scene 
– Convert to directional point lights

using [Agarwal et al. 2003]

• Indirect Illumination
– Convert indirect to direct illumination

using Instant Radiosity [Keller 97]
Caveats: no caustics, clamping, etc.

– More lights = more indirect detail
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Lightcuts Problem

Camera
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Illumination Equation

Material term

result = Mi Gi Vi IiΣ
lights

Geometric term

Visibility term

Light intensity

Currently support diffuse, phong, and Ward
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Illumination Equation

Material term

result = Mi Gi Vi IiΣ
lights

Geometric term

Visibility term

Light intensity
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Illumination Equation

Material term

result = Mi Gi Vi IiΣ
lights

Geometric term

Visibility term

Light intensity
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Key Concepts
• Light Cluster

– Approximate many lights by a single brighter 
light 
(the representative light)
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Key Concepts
• Light Cluster
• Light Tree

– Binary tree of lights and clusters

Clusters

Individual
Lights
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Key Concepts
• Light Cluster
• Light Tree
• A Cut

– A set of nodes that partitions the lights into 
clusters
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Simple Example

#1 #2 #3 #4

1 2 3 4

1 4

Light Tree

Clusters

Individual
Lights

Representative
Light

4
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Three Example Cuts
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Three Example Cuts
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Three Example Cuts
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Algorithm Overview
• Pre-process

– Convert illumination to point lights
– Build light tree

• For each eye ray
– Choose a cut to approximate the illumination
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Algorithm Overview
• Pre-process

– Convert illumination to point lights
– Build light tree

• For each eye ray
– Choose a cut to approximate the local 

illumination
Cost vs. accuracy
Avoid visible transition artifacts
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Threshold visibility

LL

ΔΔLL

L+ΔLL

ΔΔL = L = kLkL WeberWeber’’s laws law

TVI functionsTVI functions
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Perceptual Metric
• Weber’s Law

– Contrast visibility threshold is fixed percentage 
of signal

– Used 2% in our results

• Ensure each cluster’s error < visibility 
threshold
– Transitions will not be visible
– Used to select cut
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Cluster Approximation

Cluster

result ~  Mj Gj Vj IiΣ
lights

~

j is the representative light
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error < Mub Gub Vub Ii

Cluster Error Bound

Cluster

Σ
lights−

• Bound each term
– Visibility <= 1 (trivial)
– Intensity is known
– Bound material and 

geometric terms using 
cluster bounding 
volume

ub == upper bound
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Cut Selection Algorithm

Cut

• Start with coarse cut (eg, root node)
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Cut Selection Algorithm

Cut

• Select cluster with largest error bound

© Kavita Bala, Computer Science, Cornell University

Cut Selection Algorithm

Cut

• Refine if error bound > 2% of total
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Cut Selection Algorithm

Cut
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Cut Selection Algorithm

Cut
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Cut Selection Algorithm

Cut
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Cut Selection Algorithm

Cut

• Repeat until cut obeys 2% threshold
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Lightcuts (128s) Reference (1096s)

Error Error x16

Kitchen, 388K polygons, 4608 lights (72 area sources)

© Kavita Bala, Computer Science, Cornell University
Kitchen, 388K polygons, 59,672 Lights
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Kitchen, shadow ray false color

0 750 1500
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Combined Illumination

Lightcuts 128s

4 608 Lights
(Area lights only)

Avg. 259 shadow rays / pixel

Lightcuts 290s

59 672 Lights
(Area + Sun/sky + Indirect)

Avg. 478 shadow rays / pixel
(only 54 to area lights)
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Grand Central, 1.46M polygons, 143464 lights, (Area+Sun/sky+Indirect)
Avg. shadow rays per eye ray 46 (0.03%)
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Tableau, 630K polygons, 13000 lights, (EnvMap+Indirect)
Avg. shadow rays per eye ray 17 (0.13%)
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Bigscreen, 628K polygons, 639528 lights, (Area+Indirect)
Avg. shadow rays per eye ray 17 (0.003%)
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∫
eslightSourc

Problem: Many Lights and GI

dlL(...)

eye

P =

P

Many Lights + env map

Grand Central Station

∫
+ )( directindirecthemisphere

Kalabsha temple

Indirect Illumination + sun/sky
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AA, Volumetric, Motion Blur, DOF

Pixel = ∫ ∫
pixelArea hemisphere

L(...)

Motion Blur

pixel

eye

∫
time

∫
aperture

Depth-of-Field

∫
volume

Volumetric: Fog

eye

pixel
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Kalabsha temple, Egypt

How to scale to complexity?

If you can’t see it, 
don’t compute it
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More             is Lesscomplexity visually salient
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Direct+Indirect (1.3x)Direct only (relative cost 1x)
Direct+Indirect+Fog (1.8x) Direct+Indirect+Fog+Motion (2.2x)

More is Less
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eye

• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Pixel

Gather points
t = 0.34

t = 0.81

Light points

Multidimensional LC[SIG’06]
Pixel = ∫ ∫

pixelArea hemisphere

L(...)∫
time

∫
aperture

∫
volume
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• Sum of all pairs of gather and light points

Multidimensional problem

Light points

Gather points

Σ W
eight of ray

Light intensity

Gather strength

Pixel =       Sj kji Ii
( j,i)∈GxL
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Product Graph
• Explicit hierarchy would be too expensive
• Use implicit hierarchy: product graph 

Light tree

Gather tree

L0 L1 L2 L3

L4 L5

L6

G1G0

G2

L0
L1 L2 L3

G0

G1 X

eye
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Product Graph

Light tree

Gather tree

X =
L0 L1 L2 L3

L4 L5

L6

G1G0

G2

Cartesian product of two trees (gather & light)

Refine “cut” until perceptual threshold
Generalize cut, representative, error bounds

L1 L2 L3L4 L5L6L0

G1

G0

G2
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Product Graph

Light tree

Gather tree

X =
L0 L1 L2 L3

L4 L5

L6

G1G0

G2

Refine “cut” until perceptual threshold
Generalize cut, representative, error bounds
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Summary
• Unified illumination handling
• Scalable solution for many lights

– Locally adaptive representation (the cut)
• Perceptual visibility metric
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