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Lecture 10: Monte Carlo 
Rendering

CS 6620, Spring 2009
Kavita Bala

Computer Science
Cornell University
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Stochastic Ray Tracing
• Sample area of light source for direct term

• Sample hemisphere with random rays for 
indirect term

• Optimizations:
– Stratified sampling
– Importance sampling
– Combine multiple probability density functions 

into a single PDF
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Example

• Want to merge both techniques of sampling
– How?
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Balance Heuristic
• Two sampling techniques: jth sample

– X1,j with pdf p1(x), X2,j with pdf p2(x)
– Estimator Yj for jth sample
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Multiple Importance Sampling
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Indirect paths

indirectIllum (x, theta)
est_rad = 0;
if (no absorption) {
for (i=0; i<n; i++)

sample direction psi on hemisphere;
y = trace (x, psi);
est_rad +=(radiance(y,-psi)*BRDF*cos())/p(psi);

est_rad = est_rad / n;
return(est_rad/(1-absorption));

Compute radiance (x, dir){
estRadiance = Le (x, dir);
estRadiance += directIllum (x, dir);
estRadiance += indirectIllum (x, dir);
return estRadiance;

}
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Indirect Illumination
• Paths of length > 1

• Many different path generators possible

• Efficiency depends on:
– BRDFs along the path
– Visibility function
– ...
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Indirect paths - surface sampling
• Simple generator (path length = 2):

– select point on light source
– select random point on surfaces

– per path:
2 visibility checks
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Indirect paths - surface sampling
• Indirect illumination (path length 2):

• 2 visibility values cause noise
– which might be 0

yzr
A A

r dAdAxzGzfyzGzfyLxL
source

),(),(),(),()()( 2211 Θ↔Ψ−Ψ↔Ψ−Ψ→=Θ→ ∫ ∫

∑
=

Θ↔Ψ−Ψ↔Ψ−Ψ→
=Θ→

N

i iziy

iiiriiiiirii

zpyp
xzGzfyzGzfyL

N
xL

1

2211

)()(
),(),(),(),()(1)(

© Kavita Bala, Computer Science, Cornell University

Indirect paths - source shooting
• Shoot ray from light source, find hit location
• Connect hit point to receiver

– per path:
1 ray intersection
1 visibility check
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Indirect paths - receiver gathering
• Shoot ray from receiver point, find hit location
• Connect hit point to random point on light source

– per path:
1 ray intersection 
1 visibility check
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Indirect paths

Source shooting

- 1 visibility term
- 1 ray intersection

Receiver gathering

- 1 visibility term
- 1 ray intersection

Surface sampling

- 2 visibility terms;
can be 0
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Indirect paths
• Same principles apply to paths of length > 2

– generate multiple surface points
– generate multiple bounces from light sources 

and connect to receiver
– generate multiple bounces from receiver and 

connect to light sources
– …

• Estimator and noise characteristics change 
with path generator
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Other Rendering Techniques
• Bidirectional Path Tracing

• Metropolis

• Biased Techniques
– Irradiance caching
– Photon Mapping
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Stochastic ray tracing: limitations
• Generate a path from the eye to the light 

source
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When does it not work?
• Scenes in which indirect lighting dominates
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Bidirectional Path Tracing
• So … we can generate paths starting from 

the light sources! 

• Shoot ray to 
camera to see 
what pixels get 
contributions
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Bidirectional Path Tracing
• Or paths generated from both camera and 

source at the same time ...! 

• Connect 
endpoints to 
compute final 
contribution
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Why? BRDF - Reciprocity
• Direction in which path is generated, is not 

important: Reciprocity

• Algorithms:
– trace rays from the eye to the light source
– trace rays from light source to eye
– any combination of the above
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Bidirectional path tracing
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Bidirectional ray tracing
• Parameters

– eye path length = 0: shooting from source
– light path length = 0: gathering at receiver

• When useful?
– Light sources difficult to reach
– Specific brdf evaluations (e.g., caustics)
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Classic ray tracing?
• Shoot shadow-rays (direct illumination)

• Shoot perfect specular rays only for 
indirect

• Ignores many paths
– Does not solve the rendering equation
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Other Rendering Techniques
• Bidirectional Path Tracing

• Metropolis

• Biased Techniques
– Irradiance caching
– Photon Mapping
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Metropolis

• Based on Metropolis Sampling (1950s)
– Builds on bidirectional path tracing

• Introduced by Veach and Guibas to CG

• Deals with hard to find light paths
– Robust

• Hairy math, but it works
– Not that easy to implement
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Metropolis

• Generate paths (eg, w/ bidirectional pt)

• Once a valid path is found, mutate it to 
generate new valid paths

• Advantages:
– Path re-use
– Local exploration

Insight: found hard-to-find light distribution, 
mutate to find other such paths
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Metropolis
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Metropolis
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Metropolis

valid path
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Metropolis

small
perturbations
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Metropolis

small
perturbations
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Metropolis

mutations
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Metropolis

Accept
mutations
based on
energy
transport
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Mutations
• Types of mutations: 

– Bidirectional mutation
– Caustic Perturbation
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Theoretical Framework
• Generates a set of samples from f

– f defined over a state space: set of all paths

• After first sample, each sample is random 
mutation of previous sample
– Design mutator
– Mutation can be accepted (prob. a) or rejected (1-a)

• Steady-state pdf is achieved 
– Distribution of sampled paths proportional to 

contribution to image
– No explicit use of f (integrate f, normalize f, inverse f 

etc. not required)
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Approach
• Transition probabilities: T(x→x’)

– Prob. mutator creates mutation from x to x’

• Acceptance probabilities: a(x→x’)
– Prob. mutation from x to x’ accepted

• Detailed Balance:
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Metropolis
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Metropolis
• Advantages

– Robust
– Good for hard to find light paths

• Disadvantages
– Slow
– Tricky to implement and get right
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Pure Path Tracing
• Advantages

– No need for meshing
– General surfaces – requires ray intersections
– Unbiased estimates

• Disadvantages
– Noisy! Every point is independent
– Starts from scratch – does not exploit 

coherence
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Path Re-Use
• What is coherence?

– Nearby values are similar to what we want
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Unbiased vs. Consistent
• Unbiased

– No systematic error
– E[Iestimator] = I

Better results with larger N

• Consistent
– Converges to correct result with more samples
– E[Iestimator] = I + ε where limN →∞ ε = 0
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Biased Methods
• Store information (caching)

– Better type of noise: blurring 

• Greg Ward’s Radiance
• Photon Mapping 

• Instant Radiosity
• Lightcuts/Multidimensional lightcuts
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Summary of MC
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… find paths between sources and surfaces to be shaded
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MC Advantages
• Convergence rate of O(      )

• Simple
– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
– Deals with discontinuities, crazy functions,…

N
1
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MC integration - Non-Uniform

• Generate samples according to density 
function p(x)

• Some parts of the integration domain have 
higher importance

• What is optimal p(x)?
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• 1) Choose a normalized
probability density function 
p(x)

• 2) Integrate to get a 
probability
distribution function P(x):

• 3) Invert P: 0 1

Non-Uniform Samples
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Note this is similar to going 
from y axis to x in discrete case!
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How to compute?

L(x→Θ) = ?

Check for Le(x→Θ)

Now add Lr(x→Θ) = L=?

∫
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How to compute? Recursion ...

• Recursion ….

• Each additional bounce 
adds one more level of 
indirect light

• Handles ALL light transport

• “Stochastic Ray Tracing”
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Russian Roulette
• Terminate recursion using Russian roulette
• Pick some ‘absorption probability’ α

– probability 1-α that ray will bounce
– estimated radiance becomes L/ (1-α)

• E.g. α = 0.9
– only 1 chance in 10 that ray is reflected
– estimated radiance of that ray is multiplied by 10

• Intuition
– instead of shooting 10 rays, we shoot only 1, but 

count the contribution of this one 10 times
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Stochastic Ray Tracing

• Parameters?
– # starting rays per pixel
– # random rays for each surface point 

(branching factor)

• Branching factor = 1: path tracing
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Higher Dimensions
• Stratified grid sampling:

→ Nd samples

• N-rooks sampling:

→ N samples

•
• • •

• • •
•

• • • •

• • • •

•
•

•

•



26

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo

• Converges as fast as stratified sampling
– Does not require knowledge about how many 

samples will be used

• Using QMC directions evenly spaced no 
matter how many samples are used

• Samples properly stratified-> better than 
pure MC
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Next Event Estimation
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• So … sample direct and indirect with 
separate MC integration
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Direct paths
• Different path generators produce different 

estimators and different error characteristics
• Direct illumination general algorithm:

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

p = generate_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);
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Stochastic Ray Tracing
• Sample area of light source for direct term

• Sample hemisphere with random rays for 
indirect term

• Optimizations:
– Stratified sampling
– Importance sampling
– Combine multiple probability density functions 

into a single PDF
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Balance Heuristic
• Two sampling techniques: jth sample

– X1,j with pdf p1(x), X2,j with pdf p2(x)
– Estimator Yj for jth sample
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Other Rendering Techniques
• Bidirectional Path Tracing

• Metropolis

• Biased Techniques
– Irradiance caching
– Photon Mapping


