Attested Append-only Memory:
Making Adversaries Stick to their Word

Distributed Storage Systems
CS 6464
2-19-09

presented by: Hussam Abu-Libdeh

Motivation

 You want to build a service

 Easy on a single machine
 What about failure and reliability?

- Replicate service on multiple machines

* Replicated services must appear as single
server

e Linearizability

- Completed client requests appear to have been
processed in a single, totally ordered, serial schedule
consistent with the order they were submitted

Motivation

 Machines can fail or be hijacked

e Byzantine failure

- Can not distinguish if node is non-faulty, faulty, or
malicious

* Faulty servers can lie
* Equivocation
- Different lies to different people
* Previously in cs6464, SUNDR & fork consistency

Today

Can we use small trusted components to combat
equivocation ?

Agenda

* Equivocation “attacks”
 The A2M

« A2M-PBFT-E

« A2M-PBFT-EA
 A2M-Storage

e A2M-PBFT-EAXYZ-FOO-RANDOM-CHARS

Ok maybe not
* Discussion

Equivocation

» Servers respond incorrectly and differently to
different clients

 Can be detected if clients were trusted
e Could happen in two places

e Servers equivocating to clients
» Servers equivocating to other servers

 Both bad

Equivocating to Clients

time

.

Equivocating to Servers

@ 4 ----/0
faulty

non A @ Aj
Qfaulty Xn @ >

S \ client E__%

A2M

» Attested Append-only Memory
* Atrust abstraction
» Essentially:

e A chunk of memory
* You can access it

* You trust its content

- You have a reason to trust it

- Backed up by a TPM, or placed in a trusted VM or VMM
or on a separate trusted machine ..etc

A2M Interface

Supports basic operations

» append(q,x)

- Add value to the tail of the list
lookup(qg,n,z)

- Look up value at position n
end(q,z)

- Look up last entry in list
truncate(q,n)

- Remove all entries below n
advance(q,n,d,x)

— Skip a few positions (n-current position) in the list

PBFT

* Practical Byzantine Fault-Tolerance

* Client sends request, later a reply is accepted if
received from more than 1/3 of the servers

 Internally works in 3 phases

* Primary multicasts pre-prepare to all replicas

 |f a server receives pre-prepares from > 2/3 of the
servers, it multicasts a prepare message

 |f a server receives prepares from > 2/3 of the
servers, it multicasts a commit message

PBFT

pre-

request |
. prepare :

prepare commit reply

Client

Replica 1 —————— /4.

Replica 2 ——————* 44—

PBFT

 Two steps of PBFT

 Agreement
- pre-prepare, prepare, and commit messages
 Execution

- communication between replicas and client

e Other parts of PBFT

» Checkpointing, changing views ..etc
* Not central to our discussion today

A2M-PBFT-E

 PBFT with trusted Execution step (A2M)

* Replicas can equivocate to each other
e Equivocation to clients will be detected

e Clients accept reply quorums if all agree in A2M
entry for the reply sequence number
 Requires > 2/3 replicas be non-faulty (like PBFT)
o |f1/3 < # faulty < 2/3

- Clients won't commit faulty sequence #s because at least
one replica will have correct A2M entry

A2M-PBFT-E

pre-

request |
. prepare :

prepare commit reply

(b) A2M-PBFT-E

A2M-PBFT-EA

« PBFT w/ trusted Execution & Agreement steps

* Equivocation to clients will be detected
e Equivocation to servers will be detected

* At each step, replicas attest msgs with A2M

e Just need a majority (>1/2) of replicas to agree
 Thus can tolerate <1/2 of faulty servers

A2M-PBFT-EA

pre-

request _
. prepare :

prepare commit reply

| Messagé attestecl'by A2M
—_—p

(c) A2M-PBFT-EA

A2M-Storage

* Server maintains two A2M logs

* One for operation digest (like SUNDR) (log s)
e One for latest write sequence number (log h)

e Client use timestamps with read/write

 Timestamp = (req_seq, att_seq_h, att_seq_5s)
- l.e. Client operations attest if current sequence # is latest
e Clients store their last timestamp

 Read/Write operations use timestamp

 |f latest, proceed; otherwise, refresh

Evaluation

Emulated A2M in a C++ module
Ran agreement protocol w/ 4 replicas & 1 client
Microbenchmark

e requests/replies of various size
Macrobenchmark

 NFS front-end with PBFT backend
 Complle a relatively small package

Results not surprising

Processing time (ms)

Evaluation - Microbenchmarks

[_d_,_f"'l_ | _|__

" A2M-PBFT-EA(sig) —— "

| A2M-PBFT-E(sig) - _
A2M-PBFT-EA(MAC) -
_ A2M-PBFT-E(MAC) & _
PBFT - m
i o
_}{__.---__
IR

U el
- .- o 1

Request size (KB)

0 1 5 q p
Response size (KB)

Evaluation - Macrobenchmarks

NFS -S | -PBFT | -A2M-PBFT-E | -A2M-PBFT-E | -A2M-PBFT-EA | -A2M-PBFT-EA
Phase (sig) (MAC) (sig) (MAC)
Copy 0.219 | 0.709 1.026 0.728 2.141 0.763
Uncompress 1.015 3.027 4.378 3.103 8.601 3.236
Untar 2.322 | 4.448 6.826 4.553 12.896 4.669
Configure 12.748 | 12.412 19.173 12.659 26.181 13.040
Make 7.241 7.461 9.778 7.500 11.379 7.510
Clean 0.180 | 0.298 0.640 0.312 0.742 0.311
Total 23.725 | 28.355 41.821 28.854 61.940 29.528

Table 1: Mean time to complete the six macrobenchmark phases in seconds.

Evaluation — Varying delay time

Additional NFS- | A2M-PBFT-E A2M-PBFT-E A2M-PBFT-EA A2M-PBFT-EA
latency (j1s) (MAC) (MAC) with batching (MAC) (MAC) with batching
1 28.854 28.763 29.528 29.505

10 29.598 29.025 31.299 30.188

50 32.735 30.232 36.242 32.214

250 48.784 37.237 66.441 45,199

1000 117.59 65.813 192.53 101.62

Table 2: Mean time to complete the six macrobenchmark phases in seconds for different A2M additional latency costs.

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

