

Attested Append-only Memory:
Making Adversaries Stick to their Word

Distributed Storage Systems
CS 6464
2-19-09

presented by: Hussam Abu-Libdeh

Motivation

● You want to build a service
● Easy on a single machine
● What about failure and reliability?

– Replicate service on multiple machines

● Replicated services must appear as single
server
● Linearizability

– Completed client requests appear to have been
processed in a single, totally ordered, serial schedule
consistent with the order they were submitted

Motivation

● Machines can fail or be hijacked
● Byzantine failure

– Can not distinguish if node is non-faulty, faulty, or
malicious

● Faulty servers can lie
● Equivocation

– Different lies to different people
● Previously in cs6464, SUNDR & fork consistency

Today

Can we use small trusted components to combat
equivocation ?

Agenda

● Equivocation “attacks”
● The A2M
● A2M-PBFT-E
● A2M-PBFT-EA
● A2M-Storage
● A2M-PBFT-EAXYZ-FOO-RANDOM-CHARS

● Ok maybe not

● Discussion

Equivocation

● Servers respond incorrectly and differently to
different clients
● Can be detected if clients were trusted

● Could happen in two places
● Servers equivocating to clients
● Servers equivocating to other servers

● Both bad

Equivocating to Clients

Equivocating to Servers

A2M

● Attested Append-only Memory
● A trust abstraction
● Essentially:

● A chunk of memory
● You can access it
● You trust its content

– You have a reason to trust it
– Backed up by a TPM, or placed in a trusted VM or VMM

or on a separate trusted machine ..etc

A2M Interface

● Supports basic operations
● append(q,x)

– Add value to the tail of the list

● lookup(q,n,z)
– Look up value at position n

● end(q,z)
– Look up last entry in list

● truncate(q,n)
– Remove all entries below n

● advance(q,n,d,x)
– Skip a few positions (n-current position) in the list

PBFT

● Practical Byzantine Fault-Tolerance
● Client sends request, later a reply is accepted if

received from more than 1/3 of the servers
● Internally works in 3 phases

● Primary multicasts pre-prepare to all replicas
● If a server receives pre-prepares from > 2/3 of the

servers, it multicasts a prepare message
● If a server receives prepares from > 2/3 of the

servers, it multicasts a commit message

PBFT

PBFT

● Two steps of PBFT
● Agreement

– pre-prepare, prepare, and commit messages
● Execution

– communication between replicas and client

● Other parts of PBFT
● Checkpointing, changing views ..etc
● Not central to our discussion today

A2M-PBFT-E

● PBFT with trusted Execution step (A2M)
● Replicas can equivocate to each other
● Equivocation to clients will be detected

● Clients accept reply quorums if all agree in A2M
entry for the reply sequence number
● Requires > 2/3 replicas be non-faulty (like PBFT)
● If 1/3 < # faulty < 2/3

– Clients won't commit faulty sequence #s because at least
one replica will have correct A2M entry

A2M-PBFT-E

A2M-PBFT-EA

● PBFT w/ trusted Execution & Agreement steps
● Equivocation to clients will be detected
● Equivocation to servers will be detected

● At each step, replicas attest msgs with A2M
● Just need a majority (>1/2) of replicas to agree
● Thus can tolerate <1/2 of faulty servers

A2M-PBFT-EA

A2M-Storage

● Server maintains two A2M logs
● One for operation digest (like SUNDR) (log s)
● One for latest write sequence number (log h)

● Client use timestamps with read/write
● Timestamp = (req_seq, att_seq_h, att_seq_s)

– i.e. Client operations attest if current sequence # is latest
● Clients store their last timestamp

● Read/Write operations use timestamp
● If latest, proceed; otherwise, refresh

Evaluation

● Emulated A2M in a C++ module
● Ran agreement protocol w/ 4 replicas & 1 client
● Microbenchmark

● requests/replies of various size

● Macrobenchmark
● NFS front-end with PBFT backend
● Compile a relatively small package

● Results not surprising

Evaluation - Microbenchmarks

Evaluation - Macrobenchmarks

Evaluation – Varying delay time

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

