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Background

* Large scale storage systems ideally should be:
* High availability aWS
* High throughput
e Strong consistency
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Background

« Why high availability/throughput?
* AWS, Google, Microsoft, etc. need to provide service at scale

* Why strong consistency?

* Operations execute in a sequential order
» Effects of updates are reflected in subsequent queries
* Easiertoreason about and program on



Background

* Google File System (2003), AWS Dynamo (2007)

e Sacrifice strong consistency



Chain Replication

* Implement SMR
* High availability/throughput
* Sacrificed in case of network partition

* Strong consistency



Storage Service Interface

* Object store

* Two request types:
* query (objId)
* update (objId, newVal)



Assumptions

* Servers are fail-stop
e Server failures are detectable
 Reliable FIFO links between servers



Chain Replication Protocol
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Chain Replication Protocol
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Discussion

* What are some advantages/disadvantages of the protocol?



Strong Consistency

* Comes naturally from the chain design
* Queries and updates all occur sequentially at the tail



Fault Tolerance

* In a chain of length t, can tolerate at most t-1 failures

* Master service
* Detects failures
* Informs chain servers of failures and corresponding updates
* Informs client of who is head/tail
* Never fails (replicated via Paxos)



Fault Tolerance

* Head failure
 Second serveris new head
* Any requests at old head not forwarded yet are dropped




Fault Tolerance

* Tail failure
* Predecessor of tail is new tail
* History of updates at predecessor is superset of old tail
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Fault Tolerance

* Middle server failure
* Link around failed server in chain
* Make sure that any updates that failed server hasn’t forwarded get

forwarded
Req Req
r0 r0
Req Head rl rl Tail Req
r0 r0
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Extending the Chain

* Add new server to end of chain (new tail)

* Make sure all old tail updates are forwarded before acting as new
tail



Evaluation

« Compare Chain Replication to primary-backup, weak consistency
protocol

* Vary replication factor t, measure throughput



Evaluation

* Chain Replication performs as well or better than primary-backup

600 T T T T T T T 1 600 600
weak —+— 1
chain ---»---
500 plb % 500 500
3 400 + - 3 400 3 400
- - =
on on o
| | =
e e 300 e 300
= = £=
™ ™ ™
g g 200 x B 200 ¥
100 100
D 1 ] ] ] 1 ] 1 ] 1 U
0 5 101520 25 30 35 40 45 50 0 5 101520 25 30 35 40 45 50 0 5 10 1520 25 30 35 40 45 50
percentage updates percentage updates percentage updates



Evaluation

* Measure impact of server failures on throughput
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Figure 6: Query and update throughput with one or two failures at time 00:30.



Discussion

* Did people find the evaluation section convincing?
* Takeaways from Chain Replication?



Conclusion

* Chain Replication is simple yet effective!
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