
Chain Replication for Supporting 
High Throughput and Availability

Robbert van Renesse, Fred B. Schneider
OSDI 2004

Presented by: Austin Li
10/10/2024



Authors

• Robbert van Renesse

• Fred B. Schneider



Background

• Large scale storage systems ideally should be: 
• High availability
• High throughput
• Strong consistency



Background

• Why high availability/throughput?
• AWS, Google, Microsoft, etc. need to provide service at scale

• Why strong consistency?
• Operations execute in a sequential order
• Effects of updates are reflected in subsequent queries
• Easier to reason about and program on



Background

• Google File System (2003), AWS Dynamo (2007)
• Sacrifice strong consistency



Chain Replication

• Implement SMR
• High availability/throughput

• Sacrificed in case of network partition

• Strong consistency



Storage Service Interface

• Object store
• Two request types: 

• query(objId)

• update(objId, newVal)



Assumptions

• Servers are fail-stop
• Server failures are detectable
• Reliable FIFO links between servers



Chain Replication Protocol

query(X)

X=3 X=3 X=3 X=3

Head Tail



Chain Replication Protocol

query(X)

X=3 X=3 X=3 X=3

Head Tail

Client

query(X) 3



Chain Replication Protocol

update(X, 5)

X=3 X=3 X=3 X=3

Head Tail



Chain Replication Protocol

update(X, 5)

X=3 X=3 X=3 X=3

Head Tail

Client

update(X, 5)



Chain Replication Protocol

update(X, 5)

X=5 X=3 X=3 X=3

Head Tail

Client

update(X, 5)

Req

r0



Chain Replication Protocol

update(X, 5)

X=5 X=5 X=3 X=3

Head Tail

Client

update(X, 5)

Req

r0

Req

r0



Chain Replication Protocol

update(X, 5)

X=5 X=5 X=5 X=3

Head Tail

Client

update(X, 5)

Req

r0

Req

r0

Req

r0



Chain Replication Protocol

update(X, 5)

X=5 X=5 X=5 X=5

Head Tail

Client

update(X, 5)

update success

Req

r0

Req

r0

Req

r0 Req

r0



Discussion

• What are some advantages/disadvantages of the protocol? 



Strong Consistency

• Comes naturally from the chain design
• Queries and updates all occur sequentially at the tail



Fault Tolerance

• In a chain of length t, can tolerate at most t-1 failures
• Master service

• Detects failures
• Informs chain servers of failures and corresponding updates
• Informs client of who is head/tail
• Never fails (replicated via Paxos)



Fault Tolerance

• Head failure
• Second server is new head
• Any requests at old head not forwarded yet are dropped

X=7 X=5 X=5 X=5

Head TailReq

r0

r1

Req

r0

Req

r0 Req

r0



Fault Tolerance

• Tail failure
• Predecessor of tail is new tail
• History of updates at predecessor is superset of old tail

X=7 X=7 X=7 X=5

Head TailReq

r0

r1

Req

r0

r1

Req

r0

r1 Req

r0



Fault Tolerance

• Middle server failure
• Link around failed server in chain
• Make sure that any updates that failed server hasn’t forwarded get 

forwarded

X=7 X=7 X=7 X=5

Head TailReq

r0

r1

Req

r0

r1

Req

r0

r1 Req

r0



Extending the Chain

• Add new server to end of chain (new tail)
• Make sure all old tail updates are forwarded before acting as new 

tail



Evaluation

• Compare Chain Replication to primary-backup, weak consistency 
protocol 

• Vary replication factor t, measure throughput



Evaluation

• Chain Replication performs as well or better than primary-backup



Evaluation

• Measure impact of server failures on throughput



Discussion

• Did people find the evaluation section convincing? 
• Takeaways from Chain Replication? 



Conclusion

• Chain Replication is simple yet effective!


	Slide 1: Chain Replication for Supporting High Throughput and Availability
	Slide 2: Authors
	Slide 3: Background
	Slide 4: Background
	Slide 5: Background
	Slide 6: Chain Replication
	Slide 7: Storage Service Interface
	Slide 8: Assumptions
	Slide 9: Chain Replication Protocol
	Slide 10: Chain Replication Protocol
	Slide 11: Chain Replication Protocol
	Slide 12: Chain Replication Protocol
	Slide 13: Chain Replication Protocol
	Slide 14: Chain Replication Protocol
	Slide 15: Chain Replication Protocol
	Slide 16: Chain Replication Protocol
	Slide 17: Discussion
	Slide 18: Strong Consistency
	Slide 19: Fault Tolerance
	Slide 20: Fault Tolerance
	Slide 21: Fault Tolerance
	Slide 22: Fault Tolerance
	Slide 23: Extending the Chain
	Slide 24: Evaluation
	Slide 25: Evaluation
	Slide 26: Evaluation
	Slide 27: Discussion
	Slide 28: Conclusion

