Chain Replication for Supporting
High Throughput and Availability

Robbert van Renesse, Fred B. Schneider
OSDI 2004

Presented by: Austin Li
10/10/2024

Authors

e Robbertvan Renesse

* Fred B. Schneider

g AN
¥ el 4
| N 2 Y/, r\

I
e

AT‘ (4 I ’ (

Background

* Large scale storage systems ideally should be:
* High availability aWS
* High throughput
e Strong consistency

o~
<J

Background

« Why high availability/throughput?
* AWS, Google, Microsoft, etc. need to provide service at scale

* Why strong consistency?

* Operations execute in a sequential order
» Effects of updates are reflected in subsequent queries
* Easiertoreason about and program on

Background

* Google File System (2003), AWS Dynamo (2007)

e Sacrifice strong consistency

Chain Replication

* Implement SMR
* High availability/throughput
* Sacrificed in case of network partition

* Strong consistency

Storage Service Interface

* Object store

* Two request types:
* query (objId)
* update (objId, newVal)

Assumptions

* Servers are fail-stop
e Server failures are detectable
 Reliable FIFO links between servers

Chain Replication Protocol

query (X)

Head Tail

OO0

Chain Replication Protocol

query (X)
Head Tail
query (X) 3

Client

Chain Replication Protocol

update (X, 5)

Head Tail

OO0

Chain Replication Protocol

update (X, 5)

Head Tail

update (X, 5)

Client

Chain Replication Protocol

update (X, 5)

Head Tail
Req

r0
X=5

update (X, 5)

Client

Chain Replication Protocol

update (X, 5)

Req
Head r(Tail
Req

r0
X=5

update (X, 5)

Client

Chain Replication Protocol

update (X, 5)

Req Req
Head r0 r0 Tail
Req

r0
X=5

update (X, 5)

Client

Chain Replication Protocol

update (X, 5)
Req Head
r0
update (X, 5)

Client

Req

r0

Req

r0

update success

Tail

Req

r0

Discussion

* What are some advantages/disadvantages of the protocol?

Strong Consistency

* Comes naturally from the chain design
* Queries and updates all occur sequentially at the tail

Fault Tolerance

* In a chain of length t, can tolerate at most t-1 failures

* Master service
* Detects failures
* Informs chain servers of failures and corresponding updates
* Informs client of who is head/tail
* Never fails (replicated via Paxos)

Fault Tolerance

* Head failure
 Second serveris new head
* Any requests at old head not forwarded yet are dropped

Fault Tolerance

* Tail failure
* Predecessor of tail is new tail
* History of updates at predecessor is superset of old tail

Req

r0

rl

Fault Tolerance

* Middle server failure
* Link around failed server in chain
* Make sure that any updates that failed server hasn’t forwarded get

forwarded
Req Req
r0 r0
Req Head rl rl Tail Req
r0 r0

rl

Extending the Chain

* Add new server to end of chain (new tail)

* Make sure all old tail updates are forwarded before acting as new
tail

Evaluation

« Compare Chain Replication to primary-backup, weak consistency
protocol

* Vary replication factor t, measure throughput

Evaluation

* Chain Replication performs as well or better than primary-backup

600 T T T T T T T 1 600 600
weak —+— 1
chain ---»---
500 plb % 500 500
3 400 + - 3 400 3 400
- - =
on on o
| | =
e e 300 e 300
= = £=
™ ™ ™
g g 200 x B 200 ¥
100 100
D 1]]] 1] 1] 1 U
0 5 101520 25 30 35 40 45 50 0 5 101520 25 30 35 40 45 50 0 5 10 1520 25 30 35 40 45 50
percentage updates percentage updates percentage updates

Evaluation

* Measure impact of server failures on throughput

"M 110 —————————————

—
o
(&)

w
&)}

upd. thruput
s 2 g

w

query thruput
=)
o

-
o
(4]

query thruput
o
o

L . L L) |) L ap L | L L 1 L L 1 L s
00:30 01:00 01:30 02:00 00:30 01:00 01:30 02:00
time time
T T T 11 T T T - T T . T r T
5
j=8
= — _'.C_ "IO - -
°
j= N
3
. 1 L " | " L | 2 L 9 : | : . 1 L . | . L
00:30 01:00 01:30 02:00 00:30 01:00 01:30 02:00
time time
(a) one failure (b) two failures

Figure 6: Query and update throughput with one or two failures at time 00:30.

Discussion

* Did people find the evaluation section convincing?
* Takeaways from Chain Replication?

Conclusion

* Chain Replication is simple yet effective!

	Slide 1: Chain Replication for Supporting High Throughput and Availability
	Slide 2: Authors
	Slide 3: Background
	Slide 4: Background
	Slide 5: Background
	Slide 6: Chain Replication
	Slide 7: Storage Service Interface
	Slide 8: Assumptions
	Slide 9: Chain Replication Protocol
	Slide 10: Chain Replication Protocol
	Slide 11: Chain Replication Protocol
	Slide 12: Chain Replication Protocol
	Slide 13: Chain Replication Protocol
	Slide 14: Chain Replication Protocol
	Slide 15: Chain Replication Protocol
	Slide 16: Chain Replication Protocol
	Slide 17: Discussion
	Slide 18: Strong Consistency
	Slide 19: Fault Tolerance
	Slide 20: Fault Tolerance
	Slide 21: Fault Tolerance
	Slide 22: Fault Tolerance
	Slide 23: Extending the Chain
	Slide 24: Evaluation
	Slide 25: Evaluation
	Slide 26: Evaluation
	Slide 27: Discussion
	Slide 28: Conclusion

