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Background

• Large scale storage systems ideally should be: 
• High availability
• High throughput
• Strong consistency



Background

• Why high availability/throughput?
• AWS, Google, Microsoft, etc. need to provide service at scale

• Why strong consistency?
• Operations execute in a sequential order
• Effects of updates are reflected in subsequent queries
• Easier to reason about and program on



Background

• Google File System (2003), AWS Dynamo (2007)
• Sacrifice strong consistency



Chain Replication

• Implement SMR
• High availability/throughput

• Sacrificed in case of network partition

• Strong consistency



Storage Service Interface

• Object store
• Two request types: 

• query(objId)

• update(objId, newVal)



Assumptions

• Servers are fail-stop
• Server failures are detectable
• Reliable FIFO links between servers
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Chain Replication Protocol
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Discussion

• What are some advantages/disadvantages of the protocol? 



Strong Consistency

• Comes naturally from the chain design
• Queries and updates all occur sequentially at the tail



Fault Tolerance

• In a chain of length t, can tolerate at most t-1 failures
• Master service

• Detects failures
• Informs chain servers of failures and corresponding updates
• Informs client of who is head/tail
• Never fails (replicated via Paxos)



Fault Tolerance

• Head failure
• Second server is new head
• Any requests at old head not forwarded yet are dropped
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Fault Tolerance

• Tail failure
• Predecessor of tail is new tail
• History of updates at predecessor is superset of old tail
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Fault Tolerance

• Middle server failure
• Link around failed server in chain
• Make sure that any updates that failed server hasn’t forwarded get 

forwarded

X=7 X=7 X=7 X=5

Head TailReq

r0

r1

Req

r0

r1

Req

r0

r1 Req

r0



Extending the Chain

• Add new server to end of chain (new tail)
• Make sure all old tail updates are forwarded before acting as new 

tail



Evaluation

• Compare Chain Replication to primary-backup, weak consistency 
protocol 

• Vary replication factor t, measure throughput



Evaluation

• Chain Replication performs as well or better than primary-backup



Evaluation

• Measure impact of server failures on throughput



Discussion

• Did people find the evaluation section convincing? 
• Takeaways from Chain Replication? 



Conclusion

• Chain Replication is simple yet effective!
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