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Problem/motivation

● There is no real notion of time in a distributed system
● There is only some observable ordering
● This makes consistency in distributed systems hard
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Partial ordering

● Events in a single process are ordered
● ‘Happened before’ relation ‘→’ defined as:

○ If a and b are events in the same process and a comes before b, then a → b
○ If a is the sending of a message by one process and b is the receipt by another process, then 

a → b
○ If a → b and b → c then a → c

● Gives a partial ordering of events



Partial ordering

● Horizontal direction represents space, 
vertical represents time

● p1 → r4
● p3 and q3 are concurrent
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Logical clocks

● C(a): Mapping from event a to time C(a)
● Ci  for process Pi 
● Clock condition: For any events a, b, if a → b then C(a) < C(b)

○ Note that the converse is not necessarily true
● Equivalently:

○ If a and b are events in process Pi and a comes before b, then Ci(a) < Ci(b)
○ If a is the sending of a message by process Pi  and b is the receipt of that message by process 

Pj , then Ci(a) < Cj(b)



Logical clocks



Logical clocks

● When should we increment the clock so that it follows the given invariant?
○ For each process, increment local clock every time an event occurs
○ When a message is received, set clock to some value which is at least max(message sent 

timestamp+1, current clock value)
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Total ordering

● Can construct total ordering of events from system of logical clocks
● It is possible to have ties; break these by arbitrary process ordering
● Formally, total ordering relation ‘⇒’ given by:

○ If a is an event in process Pi and b is an event in process Pj, then a ⇒ b iff
■ Ci(a) < Cj(b), or
■ Ci(a) = Cj(b) and priority of Pi is higher than priority of Pj



Total ordering

● Total ordering is useful for synchronization in a distributed system
● Example: processes which share a single resource

○ Requirements:
■ A process which has been granted the resource must release it before another process 

can have it
■ Requests are granted in the order they are made
■ If every process which is granted the resource eventually releases it, then every request 

is eventually granted



Mutual exclusion

● Process Pi sends message Tm:Pi requests resource to every other process 
and puts it on its request queue

Image taken from CS 6410 fall 2017 slides



Mutual exclusion

● When process Pj receives a request resource message, it adds it to its 
request queue and sends an ack

Image taken from CS 6410 fall 2017 slides



Mutual exclusion

● To release a resource, Pi removes its own request resource messages from 
its queue and sends a Pi releases resource message to every other process

Image taken from CS 6410 fall 2017 slides



Mutual exclusion

● When process Pj receives a Pi releases resource message, removes any Pi 
requests resource messages from request queue

Image taken from CS 6410 fall 2017 slides



Mutual exclusion

● If each process independently follows this protocol, correctness is achieved
● How generalizable is this?
● What are potential problems/limitations of this approach?

○ What happens if there’s a failure?
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Anomalous behavior and physical clocks

● Anomalous behavior can occur if information which is not observable by the 
system governs user-perceived ordering of events

● This can be solved by either:
○ Introducing this information into the system, or
○ Using physical clocks

● If we are relying on physical clocks, they must:
○ Individually run at approximately the correct rate
○ Be synchronized so that all clocks report the same time within some epsilon



Why is this important?

● Notion of time in a distributed system
● State machine replication
● Your thoughts?



Related work

● State machine replication (Fred Schneider)
● Distributed snapshots (Chandy & Lamport 1985)
● Paxos
● Cool but not comprehensive tool:
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