
seL4: Formal Verification of
an OS Kernel

Xilin Tang

October 1, 2024

Outline

• OS Verification
• The paper

From Reddit
https://www.reddit.com/r/pcmasterrace/comments/1086q

0j/cursed_bsod_one_of_the_coworkers_screen_saver/

From Reddit
https://www.reddit.com/r/pcmasterrace/comments/1086q

0j/cursed_bsod_one_of_the_coworkers_screen_saver/

From wiki
https://en.wikipedia.org/wiki/Blue_screen_of_death

Discussion

• Why do we need OS verification?
• What should OS verification support?
• If it comes with certain cost, is that acceptable?

OS verification?

• The huge risk exposure of bugs in OS
• Complex and repetitive tasks
• Semantic gap between user application and formal verification

From H. Tuch, G. Klein, and G. Heiser, “OS verification:
now!,” in Proceedings of the 10th conference on Hot Topics

in Operating Systems - Volume 10, in HOTOS’05. USA:
USENIX Association, 2005, p. 2.

Implications of success

From SOSP’09 Presentation of seL4

From wiki
https://en.wikipedia.org/wiki/Blue_screen_of_death

Solution preview

• Founctional Correctness
• for each input it produces an output satisfying the specification.

• Combination of logical proof and functional programming
• Design & Implementation

• Refinement
• Confinement

Basic terminologies

• Model Checking
• Finite state concurrent system

• Proof-carrying code
• A theorem prover inside kernel

• Static source-code checking
• Functional correctness

• Implementation always strictly follows high-level abstract specification of
kernel behaviour

• Feasible to prove (not to imply) security properties at the code level

Timeline of attempts

• 1978 UCLA
• 1980 PSOS
• 1989 KIT(Kernel for Isolated Task)
• 2000 EROS (Extremely Reliable Operating System)
• 2002 VFiasco
• 2009 seL4

UCLA

From K. Anjaria and A. Mishra, “OS Verification- A Survey as
a Source of Future Challenges,” IJCSES, vol. 6, no. 4, pp. 1–

20, Aug. 2015, doi: 10.5121/ijcses.2015.6401.

https://doi.org/10.5121/ijcses.2015.6401

PSOS

From K. Anjaria and A. Mishra, “OS Verification- A Survey as
a Source of Future Challenges,” IJCSES, vol. 6, no. 4, pp. 1–

20, Aug. 2015, doi: 10.5121/ijcses.2015.6401.

https://doi.org/10.5121/ijcses.2015.6401

VFiasco

From K. Anjaria and A. Mishra, “OS Verification- A Survey as
a Source of Future Challenges,” IJCSES, vol. 6, no. 4, pp. 1–

20, Aug. 2015, doi: 10.5121/ijcses.2015.6401.

https://doi.org/10.5121/ijcses.2015.6401

EROS

• Paper and pen
• Capability based Confinement

Mechanism

From J. S. Shapiro and S. Weber, “Verifying the EROS
confinement mechanism,” in Proceeding 2000 IEEE

Symposium on Security and Privacy. S&P 2000, May 2000,
pp. 166–176. doi: 10.1109/SECPRI.2000.848454.

https://doi.org/10.1109/SECPRI.2000.848454

Comparison

From K. Anjaria and A. Mishra, “OS Verification- A Survey as
a Source of Future Challenges,” IJCSES, vol. 6, no. 4, pp. 1–

20, Aug. 2015, doi: 10.5121/ijcses.2015.6401.

https://doi.org/10.5121/ijcses.2015.6401

• Trustworthy System Lab

• Gernot Heiser

2006 OK Labs
2010 Open-Sourced
2014 Acquired by General Dynamics C4 Systems
2016 seL4 Foundation Established
2017 Adopted by HENSOLDT Cyber and Data61 (part of CSIRO)
2021 Proofcraft
2022 Dropped by Data61

More Contexts

seL4 as a family member

From Gernot Heiser, “The seL4 Microkernel An
Introduction, ” May 2024

se+Microkernel

From Gernot Heiser, “The seL4 Microkernel An
Introduction, ” May 2024

Overview

From SOSP’09 Presentation of seL4

Iterative design process

From G. Klein et al., “seL4: formal verification of an OS
kernel,” in Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles, Big Sky
Montana USA: ACM, Oct. 2009, pp. 207–220. doi:

10.1145/1629575.1629596.

https://doi.org/10.1145/1629575.1629596

Architecture

From G. Klein et al., “seL4: formal verification of an OS
kernel,” in Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles, Big Sky
Montana USA: ACM, Oct. 2009, pp. 207–220. doi:

10.1145/1629575.1629596.

https://doi.org/10.1145/1629575.1629596

Kernel objects

• Types of kernel objects include:
• Untyped memory
• TCB objects for representing threads
• Endpoint and Notification objects for IPC
• Memory objects (PageDirectory, PageTable, Frame) for building address

spaces
• CNode objects for building capability spaces
• and more ...

• Capabilities are used to manage user-level access to all of these
different types of object

Capability

• Capability, supporting principle of least authority (POLA), is better
than ACLs (access-control model of access-control lists).

From Gernot Heiser, “The seL4 Microkernel An
Introduction, ” May 2024

System calls in seL4

• Conceptually, seL4 has an "object-oriented" API with just three
system calls

• Send a message to an object (via a capability)
• Wait for a message from an object (via a capability)
• Yield (does not require an object/capability)

• For example:
• send a message to an Endpoint object to communicate with another

thread
• send a message to a TCB object to configure the thread

• In practice, there are other variants of Send/Wait to support
combined send and receive, RPC, and other patterns

Discussion

• How to support capability-based IPC?
• How can interprocess communication (IPC) be controlled and

protected using capabilities?
• One option would be to use capabilities to TCB objects

• These are useful for other purposes anyway (e.g., reading/modifying thread
status, starting, suspending, ...)

• Could use send / receive permissions on TCB capabilities to determine which
IPC actions are allowed

• But this is also inflexible:
• Single thread to single thread communication is limiting
• Lacks fine-grained control: if you can contact a thread for one purpose, you can

contact it for any purpose

From CS 410/510 Fall 2018, Portland State University

IPC via endpoints

• Interprocess communication (IPC) in seL4 passes messages
between threads using (capabilities to) an endpoint object:

• Allows flexible communication patterns
• multiple senders and/or receivers on a single endpoint
• multiple endpoints between communication partners

• Messages are transferred synchronously when both sender and
receiver are ready ("rendez-vous")

• Multiple senders or receivers can be queued at each endpoint

From CS 410/510 Fall 2018, Portland State University

A case study

• Practical systems often use a client-server architecture in which
one "server" thread performs work for many "clients“

• What if the client needs a reply? How will the server know where
to send it?

• The client could send a capability to a "reply" endpoint as part of
its request. But this makes extra work for the client, and could be
abused by a malicious (or buggy) server.

From CS 410/510 Fall 2018, Portland State University

Reply capabilities

• seL4 tackles this problem by introducing a special "Reply"
capability type:

• The Call system call combines a Send and a Wait
• The kernel gives a new "reply capability" to the receiver
• The receiver can move but not copy the reply capability
• The receiver can send a message to the reply capability
• The reply capability is deleted after its first (hence only) use

From CS 410/510 Fall 2018, Portland State University

Capability spaces

• Every thread has a “capability space”, which is a table mapping
capability indexes to kernel objects

• If a thread doesn’t have a capability to an object in its capability
space, then it cannot directly access that object

• (cf. if there is no mapping to a particular physical address in a
thread’s address space, then it cannot access that location)

From CS 410/510 Fall 2018, Portland State University

Derived Capabilities

• An implementation represents the tree as a doubly linked list with
“depth” information at each node

• Fixed storage (two pointers + depth) per node
• (Limited) traversal of tree structure without recursion

From CS 410/510 Fall 2018, Portland State University

A case study (continued)

• Reply capabilities are a new capability type that store a pointer to
the sending TCB

• Every TCB contains two capability slots:
• a “replyroot” capability that holds a ReplyCap
• a “reply” slot that is initially empty

From CS 410/510 Fall 2018, Portland State University

A case study (continued)

• If one thread makes a “Call” to another, the kernel will insert a
child of the sender’s master capability in receiver’s reply slot \

• The receiver can use a “Reply” system call to send a message
back to the sender, without knowing its identity

• The kernel can revoke the master reply capability, to remove the
child, even if the receiver has moved it to a different slot

From CS 410/510 Fall 2018, Portland State University

Review

From SOSP’09 Presentation of seL4

Review

From SOSP’09 Presentation of seL4

Review

From SOSP’09 Presentation of seL4

Data and development effort

• Initial Haskell kernel
• Limited functionality (no IRQ, single

address space)
• Abstract spec (4 pm) & first

refinement (8 py)
• Prototype (2 py) & C implementation

(2 pm)
• 300 changes

• Execution Spec
• 200 changes

• Full functionality & second
refinement (2 py)

• Misreading, failing to update, typo

From SOSP’09 Presentation of seL4

Discussion and summary

• Can we consider seL4 as OS verification done right?
• What are the implications from its development experience?
• Future opportunities?

	seL4: Formal Verification of an OS Kernel
	Outline
	Slide Number 3
	Slide Number 4
	Discussion
	OS verification?
	Implications of success
	Solution preview
	Basic terminologies
	Timeline of attempts
	UCLA
	PSOS
	VFiasco
	EROS
	Comparison
	More Contexts
	seL4 as a family member
	se+Microkernel
	Overview
	Iterative design process
	Architecture
	Kernel objects
	Capability
	System calls in seL4
	Discussion
	IPC via endpoints
	A case study
	Reply capabilities
	Capability spaces
	Derived Capabilities
	A case study (continued)
	A case study (continued)
	Review
	Review
	Review
	Data and development effort
	Discussion and summary

