sel4: Formal Verification of
an OS Kernel

Xilin Tang

October 1, 2024

Outline

 OS Verification
* The paper

| don't know WHAT
thef kis going on.

(o)
69% complete
E 1r-d Good luck searching for it online though, might even visit https://www.windows.com/stopcode

Here's a useless code that Google has no results for. Try Bing. Just kidding

Stop code: WINDOWS_MY_F KING_A! S

fin error has occurred. To continue:
Press Enter to return to Windows, or

Press CTRL+ALT+DEL to restart your computer. If you do this,

you will lose any unszaved information in all open applications.

Error: OE : 016F : BFF9B3D4

| don't know WHAT P o 1 9 G
thef kis going on.

69% complete

Good luck searching for it online though, might even visit https://www.windows.com/stopcode

Here's a useless code that Google has no results for. Try Bing. Just kidding

Stop code: WINDOWS_MY_F KING_A! S

00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
0A:
0B:
0C:
0D:
OE:
OF:

Division fault

Startup Error

Non-Maskable Interrupt
Shutdown Error

Overflow Trap

Bounds Check Fault

Invalid Opcode Fault
"Coprocessor Not Available" Fault
Double Fault

Coprocessor Segment Overrun

Invalid Task State Segment Fault
Not Present Fault

Stack Fault

General Protection Fault

Page Fault

Error Message Limit Exceed

10: Coprocessor Error Fault
11: Alignment Check Fault

Discussion

* Why do we need OS verification?
 What should OS verification support?
* |If it comes with certain cost, is that acceptable?

OS verification?

* The huge risk exposure of bugs in OS
* Complex and repetitive tasks
* Semantic gap between user application and formal verification

Regquiramanis Syslem
' '
Farmalisatian
Specification Modeal

Verification resuli

From H. Tuch, G. Klein, and G. Heiser, “OS verification:
now!,” in Proceedings of the 10th conference on Hot Topics
in Operating Systems - Volume 10, in HOTOS’05. USA:
USENIX Association, 2005, p. 2.

Implications of success

e 01: Startup Error
* 02: Non-Maskable Interrupt

. . = 03: Shutdown Error
Execution always defined: « 04: Overflow Trap

b
* no null pointer de-reference : I " 09+ Bounds Check Faut
‘ » 06: Invalid Opcode Fault
= 07: "Coprocessor Not Available" Fault
+ 08: Double Fault
» 09: Coprocessor Segment Overrun
» OA: Invalid Task State Segment Fault
+ 0B: Not Present Fault
s 0C: Stack Fault
» 0D: General Protection Fault
» OE: Page Fault
e OF: Error Message Limit Exceed

* no buffer overflows

* no code injection

* no memory leaks/out of kernel memory
* no div by zero, no undefined shift

* no undefined execution

* no infinite loops/recursion

» 10: Coprocessor Error Fault
« 11: Alignment Check Fault

Not implied:

* “secure” (define secure)

From wiki

]) https://en.wikipedia.org/wiki/Blue_screen_of_death
* zero bugs from expectation to physical world

* covert channel analysis

From SOSP’09 Presentation of selL4

Solution preview

* Founctional Correctness
* for each input it produces an output satisfying the specification.

* Combination of logical proof and functional programming

* Design & Implementation
* Refinement
 Confinement

Basic terminologies

* Model Checking

* Finite state concurrent system

* Proof-carrying code
* A theorem prover inside kernel

* Static source-code checking

e Functional correctness

* Implementation always strictly follows high-level abstract specification of
kernel behaviour

* Feasible to prove (not to imply) security properties at the code level

Timeline of attempts

* 1978 UCLA

* 1980 PSOS

* 1989 KIT(Kernel for Isolated Task)

* 2000 EROS (Extremely Reliable Operating System)
* 2002 VFiasco

2009 sel4

UCLA

Abstraet Operation

O

Top Level Specification C
:’

>

i

Abstraer Level Specification

aly

State Mapping

Low Luevel Specification

State Mapping

O

i O

Concrete Operation

Pascal Code

Consistency Proof

Hpeeification Layery

From K. Anjaria and A. Mishra, “OS Verification- A Survey as

a Source of Future Challenges,” [JCSES, vol. 6, no. 4, pp. 1-
20, Aug. 2015, doi: 10.5121/ijcses.2015.6401.

https://doi.org/10.5121/ijcses.2015.6401

PSOS

Laver 17+: Applications

Laver 6: Processes , 1/Q)

T.aver 1

Layer 0: Capabilities

From K. Anjaria and A. Mishra, “OS Verification- A Survey as
a Source of Future Challenges,” [JCSES, vol. 6, no. 4, pp. 1-
20, Aug. 2015, doi: 10.5121/ijcses.2015.6401.

https://doi.org/10.5121/ijcses.2015.6401

VFiasco

Fiasco
Source Code

Semantles
Compliler

’/ﬁemantim Specification \

(Program Semantics

L

- |
> -
C++

Semantics

Hardware
Model

Security
Properties

Theorem
Prover

Library /

From K. Anjaria and A. Mishra, “OS Verification- A Survey as
a Source of Future Challenges,” [JCSES, vol. 6, no. 4, pp. 1-
20, Aug. 2015, doi: 10.5121/ijcses.2015.6401.

Proof

https://doi.org/10.5121/ijcses.2015.6401

EROS

* Paper and pen

* Capability based Confinement |

Mechanism

i ™ node

Node \

Node

\Process 1) node

]

AU

ooood

Pages

From J. S. Shapiro and S. Weber, “Verifying the EROS
confinement mechanism,” in Proceeding 2000 IEEE
Symposium on Security and Privacy. S&P 2000, May 2000,
pp. 166-176. doi: 10.1109/SECPRI.2000.848454.

13

15

Page

— S
Null

— e N
Node

[] Capability

node
0 15

I
\? Ah

Page

https://doi.org/10.1109/SECPRI.2000.848454

Comparison

Project | Highest Lowest Specs Proofs | Prover | Approach Year
level level

UCLA | Security Pascal 90% 20% XIVUS | Alphard (7)-1980
model

KIT Isolated Assembly 100% 100% | Boyer | Interpreter (7)-1987
task Moore | equivalence

PSOS Applicatio | Secure code | 17 0% SPECI | HDM 1973-
n level layers AL 1983

VFiasco | Doesn’t C++ T0% 0% PVS Semantic 2001-
crash compiler 2008

EROS Security BitC Security | 0% ACL2(| Language 2004-(7)
model model 7) based

L4 Security C/assembly | 100% 70% Isabell | Performance | 2005-

verified | model e production (2008)

code

From K. Anjaria and A. Mishra, “OS Verification- A Survey as
a Source of Future Challenges,” [JCSES, vol. 6, no. 4, pp. 1-
20, Aug. 2015, doi: 10.5121/ijcses.2015.6401.

https://doi.org/10.5121/ijcses.2015.6401

MOre ConteXtS * Trustworthy System Lab

e Gernot Heiser

2006 OK Labs

2010 Open-Sourced

2014 Acquired by General Dynamics C4 Systems

2016 sel4 Foundation Established

2017 Adopted by HENSOLDT Cyber and Data61 (part of CSIRO)
2021 Proofcraft

2022 Dropped by Data61

selL4 as a family member

seld

Ld-embedded . OKL4 Microvisor

DKL4 Microkernel

Codezero

Hazelnut

Fiasco Fiasco.QC
NOVA

APl Inheritance

Code Inheritance
>

P4 — Pike0Ss

[o3ToalTosTogl o7 ToaToo TooTor Toe ToaToaTosToe Tor TosToe T Ty TaeThd

Creators: E DN PAULERER T LGN UNSW/NICT AfDatadd OKLabs Caormmercial Clone

From Gernot Heiser, “The selL4 Microkernel An
Introduction, ” May 2024

se+Microkernel

Syscall

User
Mode

VFS

20,000 IPC, File S}"E‘tem

ksLoC

Scheduler, Virtual Memory

Device Drivers, Dispatcher

Untrusted VM

Guest apps

MW File
Proto- Device Server
Driver

Kernel Application

Mode

Trusted

native apps native apps

1
Hardware

From Gernot Heiser, “The seL4 Microkernel An
Introduction, ” May 2024

Overview

Small trustworthy foundation
Untrusted Trusted

e hypervisor, microkernel,
nano-kernel, virtual machine, g -

separation kernel, exokernel ...

e High assurance components in
presence of other components

selL4 API:
- IPC
Threads
- VM

Ty
- Ra Qs U Herwere ” < ED

Capabilities

V.

From SOSP’09 Presentation of seL4

lterative design process

Design Gyfcle1

Hardware C Haskell >
+ Protolype [——= | Formal Executable Spec

Manual _ Proaf
A Implementation

C User F‘mgrams) [:;:. High-Performance C Implementation ‘

Figure 1: The selL4 design process

From G. Klein et al., “selL4: formal verification of an OS
kernel,” in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, Big Sky
Montana USA: ACM, Oct. 2009, pp. 207-220. doi:
10.1145/1629575.1629596.

https://doi.org/10.1145/1629575.1629596

Architecture

States:
User, Kernel, Idle

Events:

Syscall, Exception, IRQ, VM Fault

kernel exit

@4

event

—_——m e e e ——

kernel mode

Isabelle/HOL

| Abstract Specification |

i

‘ Executable Specification | <::] Haskell Prototype

I

| High-Performance C Implementation l

<] Automatic Translation

@ Refinement Proof

Figure 2: The refinement layers in the verification
of sel4

From G. Klein et al., “selL4: formal verification of an OS
kernel,” in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, Big Sky
Montana USA: ACM, Oct. 2009, pp. 207-220. doi:
10.1145/1629575.1629596.

https://doi.org/10.1145/1629575.1629596

Kernel objects

* Types of kernel objects include:

* Untyped memory

* TCB objects for representing threads
Endpoint and Notification objects for IPC

Memory objects (PageDirectory, Pagelable, Frame) for building address
spaces

CNode objects for building capability spaces
* and more ...

* Capabilities are used to manage user-level access to all of these
different types of object

Capability

* Capability, supporting principle of least authority (POLA), is better
than ACLs (access-control model of access-control lists).

Cwo
Obj reference / _

From Gernot Heiser, “The seL4 Microkernel An
Introduction, ” May 2024

System calls in selL4

 Conceptually, seL4 has an "object-oriented" APl with just three
system calls

 Send a message to an object (via a capability)
* Wait for a message from an object (via a capability)
* Yield (does not require an object/capability)

* For example:

* send a message to an Endpoint object to communicate with another
thread

* send a message to a TCB object to configure the thread

* |n practice, there are other variants of Send/Wait to support
combined send and receive, RPC, and other patterns

Discussion

* How to support capability-based IPC?

* How can interprocess communication (IPC) be controlled and
protected using capabilities?

* One option would be to use capabilities to TCB objects

* These are useful for other purposes anyway (e.g., reading/modifying thread

status, starting, suspending, ...)
* Could use send /receive permissions on TCB capabilities to determine which

|IPC actions are allowed

* But thisis also inflexible:
* Single thread to single thread communication is limiting
* Lacks fine-grained control: if you can contact a thread for one purpose, you can
contact it for any purpose

From CS 410/510 Fall 2018, Portland State University

|IPC via endpoints

* Interprocess communication (IPC) in seL4 passes messages
between threads using (capabilities to) an endpoint object:

A Frecemner
= | g

L P)
L W ra

* Allows flexible communication patterns

- e
——lendpointa |

* multiple senders and/or receivers on a single endpoint
* multiple endpoints between communication partners

* Messages are transferred synchronously when both sender and
receiver are ready ("rendez-vous")

* Multiple senders or receivers can be queued at each endpoint

From CS 410/510 Fall 2018, Portland State University

A case study

* Practical systems often use a client-server architecture in which
one "server" thread performs work for many "clients®

‘ FE My "

* What if the client needs a reply? How will the server know where

to send it?

* The client could send a capability to a "reply"” endpoint as part of
Its request. But this makes extra work for the client, and could be
abused by a malicious (or buggy) server.

From CS 410/510 Fall 2018, Portland State University

Reply capabilities

* selL4 tackles this problem by introducing a special "Reply"
capability type:

rEry

client
___JE“Cb-‘Z-I’lt | ‘ server ‘

clients

* The Call system call combines a Send and a Wait

* The kernel gives a new "reply capability” to the receiver

* The receiver can move but not copy the reply capability

* The receiver can send a message to the reply capability

* The reply capability is deleted after its first (hence only) use

From CS 410/510 Fall 2018, Portland State University

Capability spaces

* Every thread has a “capability space”, which is a table mapping
capability indexes to__<ernel objects

__

* If athread doesn’t have a capability to an object in its capability
space, then it cannot directly access that object

* (cf. if there is no mapping to a particular physical address in a
thread’s address space, then it cannot access that location)

From CS 410/510 Fall 2018, Portland State University

Derived Capabilities

* An implementation represents t

“depth” information at each node

* Fixed storage (two pointers + de

ne tree as a doubly linked list with

oth) per node

* (Limited) traversal of tree structure without recursion

rook root

[
L ¥

bef root e - aft
- all capabilitics in this list/subtree
objptr have a greater depth than root

I) —

d 8 / 1 \ ;,J Uu D;

2

0 [1]

From CS 410/510 Fall 2018, Portland State University

A case study (continued)

* Reply capabilities are a new capability type that store a pointer to
the sending TCB

* Every TCB contains two capability slots:
* a“replyroot” capability that holds a ReplyCap
* a‘“reply” slot that is initially empty

E---[[T

From CS 410/510 Fall 2018, Portland State University

A case study (continued)

* [f one thread makes a “Call” to another, the kernel will insert a
child of the sender’s master capability in receiver’s reply slot \

* The receiver can use a “Reply” system call to send a message
back to the sender, without knowing its identity

* The kernel can revoke the master reply capability, to remove the
child, even if the receiver has moved it to a different slot

aend

ReplyCap

recwv

]

]

ReplyCap

]

1]

send.replyroot

]

recv.reply

From CS 410/510 Fall 2018, Portland State University

Review

Execution always defined:

e no null pointer de-reference

* no buffer overflows

* no code injection

* no memory leaks/out of kernel memory
* no div by zero, no undefined shift

* no undefined execution

* no infinite loops/recursion

Not implied:

e “secure” (define secure)

* zero bugs from expectation to physical world

¢ covert channel analysis

From SOSP’09 Presentation of selL4

Review

Whiteboard

Haskell Formal Formal
Prototype Design Specification

fL/

From SOSP’09 Presentation of seL4

Review

Access Control Spec ﬁ Confinement

U

Specification
Haskell
Prototype

From SOSP’09 Presentation of seL4

Data and development effort

* Initial Haskell kernel
 Limited functionality (no IRQ, single Bugs found
address space)
e Abstract SpeEC (4 pm) & first during testing: 16
refinement (8 py)
* Prototype (2 py) & C implementation

(2 pm) d:Jrii:?}verific::atciJon:
* 300 changes « in design: ~150
 Execution Spec T 0 bugs

e 200 changes

* Full functionality & second
refinement (2 py)
* Misreading, failing to update, typo

From SOSP’09 Presentation of selL4

) o

switch ((word_t)ksSchedulerAction) {

Effort

Haskell design 2 py
First C impl. 2 weeks
Debugging/Testing 2 months
Kernel verification 12 py
Formal frameworks 10 py
Total 25 py
Cost
Common Criteria EALS: $87M
L4 .verified: $6M

read;

Discussion and summary

* Can we consider selL4 as OS verification done right?
* What are the implications from its development experience?

* Future opportunities?

	seL4: Formal Verification of an OS Kernel
	Outline
	Slide Number 3
	Slide Number 4
	Discussion
	OS verification?
	Implications of success
	Solution preview
	Basic terminologies
	Timeline of attempts
	UCLA
	PSOS
	VFiasco
	EROS
	Comparison
	More Contexts
	seL4 as a family member
	se+Microkernel
	Overview
	Iterative design process
	Architecture
	Kernel objects
	Capability
	System calls in seL4
	Discussion
	IPC via endpoints
	A case study
	Reply capabilities
	Capability spaces
	Derived Capabilities
	A case study (continued)
	A case study (continued)
	Review
	Review
	Review
	Data and development effort
	Discussion and summary

