Xen and the Art of
Virtualizations

Chuhan Ouyang
9/24/24

Background

Authors

e Paul Barham
o Principal Researcher at Microsoft
Research Cambridge
o TensorFlow lead
o Google’'s ML infra
o Xen, Barrelfish multi-kernel OS
e Boris Dragovic
o Chief Strategy Officer at Hyperoptic
o McKinsey & Company
o Xen, XenoTrust
e Xen began at Cambridge University
and is being further developed

primarily by Citrix.

Timeline - VM/VMM and Microkernels

1981:"0S support for
1981: IBM/370 database
management”
VM/VMM

1997
DISCO/ VMWare

1980s: Mach
1990s: SPIN,
Exokernel
1995: L4

Microkernels

2002: Denoh

2003: Xen

VM and VMM

e Paper published in 2003
Computer become powerful to support
many virtual machines that each run a
separate OS
e Virtual Machine Monitor (VMM)/Hypervisor
o Enables the creation, running, and
management of virtual machines
(VMs) on a host system.

e Key Challenges
o isolate VM from each other
o support variety of OS (heterogeneity), low
performance overhead

e Xen: hypervisor that multiplexes resources
at the granularity of an entre OS

Virtual machines

Microkernel and VM: Similarity and Differences

Microkernel minimizes the kernel
and implements whatever possible
outside of the kernel

VMM transforms the single machine
interface into the illusion of many

Flexibility Software reliability
Fault isolation Data security
Maintainability ’ Alfernative system APIs
Restricted intferdependencies Improved mechanism
Minimality Minimality

Papers: “Are VMM Microkernels Done Right” (Hand et al, HotOS 2005)

“Are VMM Microkernels Done Right” (Heiser et al, SIGOPS 2006)

Granularity of Multiplexing

e Alternate approach: run multiple applications on the same OS

O

O

does not support performance isolation
difficult fo ensure all resource usage is accounted o the correct
process

~® Xen: multiplexes resources at the granularity of an entre OS

O

O

O

performance isolation

flexibility: allow multiple OS to coexist

drawback: more heavyweight than process-level multiplexing for
initializing processes and resource consumption

Virtualization Approaches

Traditional VMM: Full Virtualization

e Virtual hardware eXposed is functionally identical to the
underlying machine
e DBenefit
o OS needs no modifications to be run
~® Drawbacks
o Not compatible with x86
o Supervisor instruction needs be handled by VMM for
correct virtualization '
Executing instructions with insufficient privilege silently fails
o High-cost for virtualizing x86 MMU

Xen: Paravirtualization

e Provide virtual machine
abstraction similar but not VM (5. Domo)
identical to the underlying System Services
hardware

e Benefits

o improved performance _

e Drawbacks . —

o require modifying the
guest OS
o but no changes fo the ABI

and no changes to the
guest applications

Xen: Design Principles

1. Unmodified application binaries is essential. Must virtualize all architectural features
required by existing standard ABIs.

2. Supporting full multi-application operating systems. (Denali only supports VM hosting
single-user single-application unprotected OS)

3. Paravirtualization for high performance and strong resource isolation.

4. Completely hiding the effects of resource virtualization from guest OSes risks both
correctness and performance.

Note: domain = running instance of a VM

Control
Plane
Software

User User User
Software Software Software

GuestOS GuestOS GuestOS GuestOS
(XenoLinux) (XenoLinux) (XenoBSD) (XenoXP)

Xeno-Aware Xeno-Aware Xeno-Aware Xeno-Aware
Device Drivers Device Drivers Device Drivers Device Drivers

Domaind W virtual virtual virtual virtual
conuo x86 CPU phy mem network blockdev

interface t ¢ t t

H/W (SMP x86, phy mem, enet, SCSI/IDE)

Discussion Questions

1. Besides from the incOmpaTibiIiTy associated with x86, is there any other
drawbacks to using full virtualization compared to paravirtualization?
2. What are some challenges to support virtualizing heterogeneous 0OS (mixes
of different operating systems)?
3. What is the benefit of this principle : “Completely hiding the effects of
| resource virtualization from guest OSes risks both correctness and
performance.”

Virtualization Mechanisms

Design - Control Transfer

e Xen <-> domain communication
e Domain to Xen: synchronous call

using hyperco” s User User User
: Software Software Software
e Xen to domain: asynchronous event
mechanism
e Hypercall ; 5 GuestOS GuestOS GuestOS

; Xenc) enolLinux 'XenoBSD, enoXP,
o synchronous software trap into
hypervisor Bitmask Bitmask Bitmask
Device Drivers [
o perform privileged operation e X

. omant irtual irtual irtual irtual
e Event mechanism Control - \gGCPY phymem network biockdev E

o replace device interrupts with t 3 t t
lightweight nOTIﬂCGT.'On H/W (SMP x86, phy mem, enet, SCSI/IDE)

o Represent event using flags

o Pending event are stored in bitmask,
per-domain

o Ex got data over network, completed
a virtual disk update

Design - Data Transfer

e Communication

between guest OS and Request Consumer Request Producer
I/0 devices Private pointer Shared pointer
e Goal: little overhead in Xen \A updated by guest OS
e Circular queue of I/0
descriptor

e Allocated by domain
but accessible within

Xen R))
. esponse Producer
e Two pairs of producer, Shared pointer
consumer pointer updated by Re'sponse .Consumer
o Requests: Domains Xen anate pointer
are producer, Xen in guest OS
is consumer)
o Response: Xen is []Request queue - Descriptors queued by the VM but not yet accepted by Xen

producer, Domains Outstanding descriptors - Descriptor slots awaiting a response from Xen
are consumer

e Reorder I/0 for
scheduling/priority

[IResponse queue - Descriptors returned by Xen in response to serviced requests
[]Unused descriptors

Discussion Questions

1. Are there performanée or concurrency issues with using the
shared-memory ring buffer system as the communication system?

2. Is it possible for domains to be blocked on an 10 event due 1o
inefficient resource multiplexing?

Virtual Machine Interface

Memory Management
Segmentation

Paging

Cannot install fully-privileged segment descriptors and cannot overlap with the top end of the linear
address space.

Guest OS has direct read access to hardware page tables, but updates are batched and validated by
the hypervisor. A domain may be allocated discontiguous machine pages.

CPU
Protection
Exceptions

System Calls

Interrupts
Time

Guest OS must run at a lower privilege level than Xen.

Guest OS must register a descriptor table for exception handlers with Xen. Aside from page faults,
the handlers remain the same.

Guest OS may install a ‘fast’ handler for system calls, allowing direct calls from an application into
its guest OS and avoiding indirecting through Xen on every call.

Hardware interrupts are replaced with a lightweight event system.

Each guest OS has a timer interface and 1s aware of both ‘real” and ‘virtual’ time.

Device I/0
Network, Disk, etc.

Virtual devices are elegant and simple to access. Data is transferred using asynchronous I/O rings.
An event mechanism replaces hardware interrupts for notifications.

Virtualization Interface - Memory Management

Guest OS are responsible for allocating and managing individual
hardware page fables

Xen is at the top of every address space (64MB)

New page table need to be registered with Xen

OS relinquish direct write privileges

Can batch update requests
o Amortize for the overhead of enfering Xen
o useful for creating new address space
o Must commit updates before TLB flush
Updates are validated by Xen, using hypercalls
Memory allocation specified at creation for each domain
o Can claim additional pages
o Can release memory pages

Virtualization Interface - CPU

e Guest OS are modified to run at a
lower privileged level

e Rings for privilege levels
o 0 (most privileged), 3 (least) ' f;'::xisczmﬁzss
o Modify OS fo execute at ring 1

- @ Privileged instruction need to be .

validated and executed within Xen i Restricted Access

e [Exceptions: table describing handler
for each type is registered with Xen

e F[requent exceptions: system calls
Fast exception handler access directly
by the processor without indirecting 1o
Xen

Virtualization Interface - CPU Scheduling

Borrowed Virtual Time (BVT) scheduling algorithm
Benefits

o Work-conserving

o Low-latency wake-up of a domain when receiving an event

o Fast dispatch — minimize effect of virtualization
Drawbacks

o Violae ‘idea’ fair sharing

o Favor recently-woken domains
Note: low-latency dispatch refers to the ability of the scheduler to quickly dispatch or
execute a thread that requires immediate CPU time, especially for real-time or
inferactive tasks that are latency-sensitive.
In BVT, threads can "borrow" virtual time by warping their virtual fime to an earlier
point, making them appear to have a higher priority

Virtualization Interface - Device 10

e Using shared—memory,' asynchronous
buffer-descriptor rings

e High-performance communication to pass
buffer information

e Xen perform validation check (is address
in the domain's memory reservation?)

e Use lightweight event delivery mechanism

e Xen will call event handler specified by the
guest OS

e Using shared-memory, asynchronous
buffer-descriptor rings

Request Consumer Request Producer
Private pointer Shared pointer
in Xen \ / updated by guest OS

Response Producer
Shared pointer
updated by Response Consumer
Xen Private pointer
in guest OS

[]Request queue - Descriptors queued by the VM but not yet accepted by Xen
Outstanding descriptors - Descriptor slots awaiting a response from Xen

[IResponse queue - Descriptors returned by Xen in response to serviced requests
:] Unused descriptors

Virtualization Interface - Split Drivers

e DomainO is responsible for hosting
application-level management software
o Create/terminate other domains,

control their scheduling parameters,

physical memory allocations, and
accesses for physical disks and
network devices
e Split-Driver model: fechnique for creating
efficient virtual hardware

o One device driver runs inside guest
to interact directly with applications

o They communicates with another
corresponding device driver inside
Domain0O that manage hardware

o Pair of drivers function together (Ex.

block and network device drivers)

User User User
Software Software Software

GuestOS GuestOS GuestOS
(XenoLinux) (XenoBSD) (XenoXP)

Xeno-Aware Xeno-Aware Xeno-Aware
Device Drivers Device Drivers Device Drivers

Xeno-Aware
Device Drivers

Domain0

w6l virtual virtual virtual virtual
contro x86 CPU phy mem network blockdev

interface t t t t

H/W (SMP x86, phy mem, enet, SCSI/IDE)

Virtual firewall-router (VFR): each domain has
one or more network interfaces (VIFs)

I/0 ring buffers with associated rules
<pattern> <action>
if pattern matches then action is applied

DomainO insert and remove rules
Rules can prevent IP src spoofing and
ensure correct demultiplexing
Transmit
o guestOS: enqueue buffer descriptor on
transmit ring
o Xen: copy header and execute rule
Receive
o Xen: defermines destination, exchange
buffer to page frame
o Page frame must be pinned
o Exchange unused page frame for each
packet received

(CREHON IO

Virtualization Interface - Network

User
Software

User
Software

User
Software

GuestOS GuestOS GuestOS
(XenoLinux) (XenoBSD) (XenoXP)

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Domain0
control
interface

virtual virtual virtual virtual
x86 CPU phy mem network blockdev

; ¢ ; }

H/W (SMP x86, phy mem, enet, SCSI/IDE)

Virtualization Interface - Disks

DomainO has access to physical disks

Other domains access through virtual block devices (VBD)

VBD has extents and ownership info, accessed using I/0 ring
Xen maintains translation table for each VBD

When receive disk request, Xen inspect VBD identifier and offset
Zero-copy data transfer using DMA to transfer between disk
content and pinned memory pages in the requesting domain
Xen batches requests

Discussion Questions

1. For OS with only 2 levels, what is the approach for putfting the hypervisor at a
priority higher than the 0S?
2. Isthere security risks for the way that Xen virtualizes the CPU, memory, disk,
or network?
3. Isitaproblem to exchange a unused page for every packet received?

Performance

Evaluation

e Xen use Xenolinux (based on Linux 2.4.21) as guest OS
o developing for XP and NetBSD
e VMware Workstation 3.2

e User-mode Linux (UML)
e Native linux, executing multiple applications on the OS (vs. applications
in separate VMs for Xen)

e Dell 2650 dual-processor

o 24GHz Xeon server
o 2GB Ram

x
S
=
3
]
=)
)
—
Q
Q
)
)
=
=
S
)
e

1 1 1 l
‘ 65

E— E— E——" EE— — E— FE— A—
—
i
u_____ii§

3

¢ ¢ ¢ ¢ (¢ _(__} .|

L X V U L X V U L X V U L X V
SPEC INT2000 (score) Linux build time (s) OSDB-IR (tup/s) OSDB-OLTP (tup/s) dbench (score) SPEC WEB99 (score)

C

L X \% U L X \ U

null null opensict sig sig fork execsh Config| ~ OK File 10K File Mmap Prot Page
call 1/0 stat closeTCP inst hndl proc proc proc create delete create delete lat fault fault
0.53 0.81 2.10 3.51 23.2 0.83 2.94 143 601 4k2 L-SMP| 449 242 123 452 99.0 133 1.88
0.45 0.50 1.28 1.92 5.70 0.68 2.49 110 530 4kO0 L-UP | 321 6.08 66.0 125 680 1.06 142
0.46 0.50 1.22 1.88 5.69 0.69 1.75 198 768 4k8 Xen | 325 586 68.2 136 139 140 273
0.73 0.83 1.88 2.99 11.1 1.02 4.63 874 2k3 10k VMW | 363 93 85.6 214 620 7.53 124
24.7 25.1 36.1 62.8 39.9 26.0 46.0 21k 33k 58k UML | 130 65.7 250 113 1k4 218 26.3

Table 3: 1mbench: Processes - times in s Table 5: 1lmbench: File & VM system latencies in s

2p 8p 8p 1

2p 2p 16p 6p
Config| OK 16K 64K 16K 64K 16K 64K TCP MTU 1500 TCP MTU 500
L-SMP| 1.69 1.88 2.03 2.36 26.8 4.79 38.4 > RX X RX
L-UP | 0.77 0.91 1.06 1.03 24.3 3.61 37.6 ; 897 897 602 544
Xen | 1.97 2.22 2.67 3.07 28.7 7.08 39.4 897 (-0%) 897 (-0%) 516 (-14%) 467 (-14%)
VMW | 18.1 17.6 21.3 224 516 41.7 72.2 291 (-68%) 615 (-31%) 101 (-83%) 137 (-75%)
UML | 155 146 144 16.3 36.8 23.6 52.0 165 (-82%) 203 (-77%) 61.1(-90%) 91.4(-83%)

Table 4: 1mbench: Context switching times in ps Table 6: ttcp: Bandwidth in Mb/s

Discussion

1. What are the trends in performance evaluation, especially for cases
where Xen has worse performances than native Linux?

2. What are the most significant performance optimizations that reduced
the overhead for Xen?

Summary

o Xen: parovirTuaIiZoTion, strong performance isolation,
OS-granularity VMM that does not require the applications
to change their ABIs and supports multi-application OS

e Historically, VMM has high performance overhead

‘@ Xen shows performance comparable with native Linux and
significantly beffer than VMWare and User-Space Linux

Xen and Microkernels

e “Xen in particular; are in fact a specific point in the
microkernels design space; that VMMs are microkernels

done right” (Hand et al.)

Microkernels

Xen

Liability inversion: applications depend on
user-level components (external pagers)

Avoid liability inversion: isolation, partitions
memory and allows limited sharing

Depends on IPC performance

Less IPC between VM; Control (synchronous
IPC) and data path (async rings) split

Changing ABls

Support out-of-the-box code

Academic research

Developed in industry

