
Xen and the Art of
Virtualizations

Chuhan Ouyang

9/24/24

Background

Authors

● Paul Barham
○ Principal Researcher at Microsoft

Research Cambridge
○ TensorFlow lead
○ Google’s ML infra
○ Xen, Barrelfish multi-kernel OS

● Boris Dragovic
○ Chief Strategy Officer at Hyperoptic
○ McKinsey & Company

○ Xen, XenoTrust
● Xen began at Cambridge University

and is being further developed
primarily by Citrix.

Timeline - VM/VMM and Microkernels

1981: IBM/370

1997:
Disco/VMWare

2003: Xen

2002: Denali

1981:”OS support for
database
management”

1980s: Mach

2003: Xen

1995: L4

1990s: SPIN,
Exokernel

VM/VMM Microkernels

VM and VMM

● Paper published in 2003
● Computer become powerful to support

many virtual machines that each run a
separate OS

● Virtual Machine Monitor (VMM)/Hypervisor
○ Enables the creation, running, and

management of virtual machines
(VMs) on a host system.

● Key Challenges
○ isolate VM from each other
○ support variety of OS (heterogeneity), low

performance overhead

● Xen: hypervisor that multiplexes resources
at the granularity of an entre OS

Microkernel and VM: Similarity and Differences

Papers: “Are VMM Microkernels Done Right” (Hand et al., HotOS 2005)

 “Are VMM Microkernels Done Right” (Heiser et al., SIGOPS 2006)

VMM transforms the single machine
interface into the illusion of many

Microkernel minimizes the kernel
and implements whatever possible

outside of the kernel

Software reliability
Data security

Alternative system APIs
Improved mechanism

Minimality

Flexibility
Fault isolation
Maintainability

Restricted interdependencies
Minimality

Granularity of Multiplexing

● Alternate approach: run multiple applications on the same OS
○ does not support performance isolation
○ difficult to ensure all resource usage is accounted to the correct

process

● Xen: multiplexes resources at the granularity of an entre OS
○ performance isolation
○ flexibility: allow multiple OS to coexist
○ drawback: more heavyweight than process-level multiplexing for

initializing processes and resource consumption

Virtualization Approaches

Traditional VMM: Full Virtualization

● Virtual hardware exposed is functionally identical to the
underlying machine

● Benefit
○ OS needs no modifications to be run

● Drawbacks
○ Not compatible with x86
○ Supervisor instruction needs be handled by VMM for

correct virtualization
○ Executing instructions with insufficient privilege silently fails
○ High-cost for virtualizing x86 MMU

Xen: Paravirtualization

● Provide virtual machine
abstraction similar but not
identical to the underlying
hardware

● Benefits
○ improved performance

● Drawbacks
○ require modifying the

guest OS
○ but no changes to the ABI

and no changes to the
guest applications

Xen: Design Principles

1. Unmodified application binaries is essential. Must virtualize all architectural features
required by existing standard ABIs.

2. Supporting full multi-application operating systems. (Denali only supports VM hosting
single-user single-application unprotected OS)

3. Paravirtualization for high performance and strong resource isolation.

4. Completely hiding the effects of resource virtualization from guest OSes risks both
correctness and performance.

Note: domain = running instance of a VM

Discussion Questions

1. Besides from the incompatibility associated with x86, is there any other
drawbacks to using full virtualization compared to paravirtualization?

2. What are some challenges to support virtualizing heterogeneous OS (mixes
of different operating systems)?

3. What is the benefit of this principle : “Completely hiding the effects of
resource virtualization from guest OSes risks both correctness and
performance.”

Virtualization Mechanisms

Design - Control Transfer

● Xen <-> domain communication
● Domain to Xen: synchronous call

using hypercall
● Xen to domain: asynchronous event

mechanism
● Hypercall

○ synchronous software trap into
hypervisor

○ perform privileged operation
● Event mechanism

○ replace device interrupts with
lightweight notification

○ Represent event using flags
○ Pending event are stored in bitmask,

per-domain
○ Ex. got data over network, completed

a virtual disk update

Bitmask Bitmask Bitmask

Design - Data Transfer

● Communication
between guest OS and
I/O devices

● Goal: little overhead
● Circular queue of I/O

descriptor
● Allocated by domain

but accessible within
Xen

● Two pairs of producer,
consumer pointer
○ Requests: Domains

are producer, Xen
is consumer

○ Response: Xen is
producer, Domains
are consumer

● Reorder I/O for
scheduling/priority

Discussion Questions

1. Are there performance or concurrency issues with using the
shared-memory ring buffer system as the communication system?

2. Is it possible for domains to be blocked on an IO event due to
inefficient resource multiplexing?

Virtual Machine Interface

Virtualization Interface - Memory Management

● Guest OS are responsible for allocating and managing individual
hardware page tables

● Xen is at the top of every address space (64MB)
● New page table need to be registered with Xen
● OS relinquish direct write privileges
● Can batch update requests

○ Amortize for the overhead of entering Xen
○ useful for creating new address space
○ Must commit updates before TLB flush

● Updates are validated by Xen, using hypercalls
● Memory allocation specified at creation for each domain

○ Can claim additional pages
○ Can release memory pages

Virtualization Interface - CPU

● Guest OS are modified to run at a
lower privileged level

● Rings for privilege levels
○ 0 (most privileged), 3 (least)
○ Modify OS to execute at ring 1

● Privileged instruction need to be
validated and executed within Xen

● Exceptions: table describing handler
for each type is registered with Xen

● Frequent exceptions: system calls
● Fast exception handler access directly

by the processor without indirecting to
Xen

Virtualization Interface - CPU Scheduling

● Borrowed Virtual Time (BVT) scheduling algorithm
● Benefits

○ Work-conserving
○ Low-latency wake-up of a domain when receiving an event
○ Fast dispatch → minimize effect of virtualization

● Drawbacks
○ Violae ‘idea’ fair sharing
○ Favor recently-woken domains

● Note: low-latency dispatch refers to the ability of the scheduler to quickly dispatch or
execute a thread that requires immediate CPU time, especially for real-time or
interactive tasks that are latency-sensitive.

● In BVT, threads can "borrow" virtual time by warping their virtual time to an earlier
point, making them appear to have a higher priority

Virtualization Interface - Device IO

● Using shared-memory, asynchronous
buffer-descriptor rings

● High-performance communication to pass
buffer information

● Xen perform validation check (is address
in the domain’s memory reservation?)

● Use lightweight event delivery mechanism
● Xen will call event handler specified by the

guest OS
● Using shared-memory, asynchronous

buffer-descriptor rings

Virtualization Interface - Split Drivers

● Domain0 is responsible for hosting
application-level management software
○ Create/terminate other domains,

control their scheduling parameters,
physical memory allocations, and
accesses for physical disks and
network devices

● Split-Driver model: technique for creating
efficient virtual hardware
○ One device driver runs inside guest

to interact directly with applications
○ They communicates with another

corresponding device driver inside
Domain0 that manage hardware

○ Pair of drivers function together (Ex.
block and network device drivers)

Virtualization Interface - Network
● Virtual firewall-router (VFR): each domain has

one or more network interfaces (VIFs)
● I/O ring buffers with associated rules

○ <pattern> <action>
○ if pattern matches then action is applied
○ Domain0 insert and remove rules
○ Rules can prevent IP src spoofing and

ensure correct demultiplexing
● Transmit

○ guestOS: enqueue buffer descriptor on
transmit ring

○ Xen: copy header and execute rule
● Receive

○ Xen: determines destination, exchange
buffer to page frame

○ Page frame must be pinned
○ Exchange unused page frame for each

packet received

Virtualization Interface - Disks

● Domain0 has access to physical disks
● Other domains access through virtual block devices (VBD)
● VBD has extents and ownership info, accessed using I/O ring
● Xen maintains translation table for each VBD
● When receive disk request, Xen inspect VBD identifier and offset
● Zero-copy data transfer using DMA to transfer between disk

content and pinned memory pages in the requesting domain
● Xen batches requests

Discussion Questions

1. For OS with only 2 levels, what is the approach for putting the hypervisor at a
priority higher than the OS?

2. Is there security risks for the way that Xen virtualizes the CPU, memory, disk,
or network?

3. Is it a problem to exchange a unused page for every packet received?

Performance

 Evaluation

● Xen use XenoLinux (based on Linux 2.4.21) as guest OS
○ developing for XP and NetBSD

● VMware Workstation 3.2
● User-mode Linux (UML)
● Native linux, executing multiple applications on the OS (vs. applications

in separate VMs for Xen)
● Dell 2650 dual-processor

○ 2.4GHz Xeon server
○ 2GB Ram

Discussion

1. What are the trends in performance evaluation, especially for cases
where Xen has worse performances than native Linux?

2. What are the most significant performance optimizations that reduced
the overhead for Xen?

Summary

● Xen: paravirtualization, strong performance isolation,
OS-granularity VMM that does not require the applications
to change their ABIs and supports multi-application OS

● Historically, VMM has high performance overhead
● Xen shows performance comparable with native Linux and

significantly better than VMWare and User-Space Linux

Xen and Microkernels

● “Xen in particular, are in fact a specific point in the
microkernels design space; that VMMs are microkernels
done right” (Hand et al.)

Microkernels Xen

Liability inversion: applications depend on
user-level components (external pagers)

Avoid liability inversion: isolation, partitions
memory and allows limited sharing

Depends on IPC performance Less IPC between VM; Control (synchronous
IPC) and data path (async rings) split

Changing ABIs Support out-of-the-box code

Academic research Developed in industry

