
Exokernels: Extensible Kernels
Salman Abid

September 19th, 2024
(Based on slides from Edgar Velázquez-Armendáriz and 

Dawson Engler)
1



Agenda
- Exokernel: An Operating System architecture for 

Application-Level Resource Management

- Extensibility, Safety and Performance in the SPIN 
Operating System

2



Agenda
- Exokernel: An Operating System architecture for 

Application-Level Resource Management

- Extensibility, Safety and Performance in the SPIN 
Operating System

3



Timeline
- 1981: Operating system support for database management by Michael Stonebraker

- 1980s: Mach by Rashid et al.

- 1990s:

- SPIN

- Exokernel

- Disco (VM)

- 2000s:

- Xen

4



Why an exokernel?
- Exterminate All Operating System Abstractions

(HotOS ‘95) by Dawson Engler and Frans Kaashoek

- Traditional OS multiplexes and abstracts physical 
resources

- Root of all (OS) problems

- Abstractions are good, just not in the kernel

5



Why an exokernel? 
- Traditional OS software is generic… but 

opinionated
- OS abstractions preempt application design decisions

- Result: Applications are slow, or can’t be written

- Embody the “end-to-end” argument as much as 
possible

6



Context
- Written by Dawson R. Engler, M. Frans Kaashoek 

and James O’Toole Jr. 

- Engler’s thesis for his MS.

- Followed by ‘Application Performance and 
Flexibility on Exokernel Systems’ in SOSP ‘97

7



Overview
Kernel:
- Separate hardware access from resource management

- Share resources, not policies
Library Operating System:
- Implement high-level abstractions (e.g. IPC, Scheduling, 

VM)
- These abstractions are extensible

8



Traditional OS Architecture

9By Jan Newmarch, Box Hill Institute



Exokernel Architecture

Fig 1 from SOSP ‘95 11



Exokernel vs Microkernels vs VM
- Exokernel defines only a low-level interface
- A microkernel also runs almost everything on user-

level, but has fixed abstractions
- A VM emulates the whole machine, doesn’t provide 

direct access

12



Exokernel vs Microkernels vs VM

13From CS262a Fall 2016, UC Berkeley



Discussion
- How compatible is the exokernel architecture with 

existing OS design?
- What happens to executables? 

(Consider size, library dependencies, portability)
- The authors claim that OS experiments are easier in the 

user-space. How would that scale commercially? Do 
they want to make kernel hackers out of application 
developers?

14



Exokernel: Design
- Kernel multiplexes hardware

- Doesn’t govern authorization
- Maximise application control

- Expose allocation and kernel data structures
- Expose names
- Access to hardware

- Revoke resources from applications
1. “Request” access to resource
2. Repossess resource if unresponsive

15



Exokernel: Memory
- Guard physical memory access

- Examine Lib. OS capability before granting access
- Software TLB caches access bindings

- Large TLB; improves performance
- “Read-only” access to page table for applications

- Applications can share resources easily
- To break binding: flush TLB, dequeue DMA requests

16



Exokernel: Scheduling
- Round-robin scheduling
- Library OS implements context-switching
- The kernel is unforgiving; applications that take too 

much time are killed

17



Exokernel: Network
- Dynamic Packet Filters
- Fast de-multiplexing of traffic
- Code can be ‘downloaded’ into kernel

- Application-specific Safe Handlers (ASH)

18



Exokernel: Implementation
- On MIPS-based DECstations
- Aegis: an exokernel in practice

- Physical memory 
- TLB entries 
- Time slices 
- Network

- ExOS: Rudimentary UNIX-like library
(Processes, Virtual Memory, Network protocols)

19



Results on DEC5000/25Mhz

From Engler’s talk at SOSP ‘95 20



Microbenchmarks

21



Discussion
- We see clear examples of Exokernel being more 

performant, but little in the way of commercial 
adoption. Why is that?

- What ideas from extensibility, if not the kernel itself, 
are part of modern systems?

22



Agenda
- Exokernel: An Operating System architecture for 

Application-Level Resource Management

- Extensibility, Safety and Performance in the SPIN 
Operating System

23



SPIN
- University of Washington.

- Brian N. Bershad, Stefan Savage, Emin Gun 
Sirer, Marc E. Fiuczynski, David Becker, Craig 
Chambers, Susan Eggers

- 1997 IEEE Symposium on Security and Privacy

24



SPIN
- Similar ideas about extensibility

- Extensibility: Extensions dynamically linked and bound at runtime

- Safety:

- Written in Modula-3

- Statically verified. Type safe.

- Performance:

- Extensions run inside the kernel. No overhead for traps.

25



SPIN vs Exokernel
- SPIN relies on safety mechanisms of the Modula-

3 language

- Extensions execute in response to system events 
(e.g. page fault, thread scheduling)

26



In a nutshell

27From CS262a Fall 2016, UC Berkeley



To summarize…
- Exokernels are fast and simple

- OS abstractions can be implemented as libraries

- Extensiblity in the kernel gives significant performance 
benefits

28


	Exokernels: Extensible Kernels
	Agenda
	Agenda
	Timeline
	Why an exokernel?
	Why an exokernel? 
	Context
	Overview
	Traditional OS Architecture
	Exokernel Architecture
	Exokernel vs Microkernels vs VM
	Exokernel vs Microkernels vs VM
	Discussion
	Exokernel: Design
	Exokernel: Memory
	Exokernel: Scheduling
	Exokernel: Network
	Exokernel: Implementation
	Results on DEC5000/25Mhz
	Microbenchmarks
	Discussion
	Agenda
	SPIN
	SPIN
	SPIN vs Exokernel
	In a nutshell
	To summarize…

