
The Performance of µ-Kernel-Based Systems

Simon Bertron

September 17, 2024

Outline

Microkernels

Mach

L4

The Paper!

Outline

Microkernels

Mach

L4

The Paper!

Some Context

I 1981
I Michael Stonebraker publishes Operating System Support for

Database Management
I File system, scheduler, concurrency control all suboptimal for

databases
I Perhaps different applications require different OS primitives

https://dl.acm.org/doi/abs/10.1145/358699.358703
https://dl.acm.org/doi/abs/10.1145/358699.358703

Some Context

I 1989
I Unix alternatives are proliferating

I Unix flavors endorsed by different standards bodies
I But also non-Unix alternatives like Mac OS or MS-DOS

Intel ARM PowerPC …
BSD …

Mac OS …
MS-DOS …

...
...

...
... . . .

I Introducing a new OS or architecture required adding a full
row or column to this matrix

What is a Microkernel?

A microkernel is an operating system which attempts to push
traditional OS operations out of the “core” OS kernel. It ends up
smaller than a traditional monolithic kernel as a result. Hence, it is
“micro”.

Why Microkernels?

1. Hardware Abstraction
2. Modularity
3. Security
4. Performance

Approaches to micro-ing the kernel

I Exokernel
I Having any architecture-independent software abstraction layer

at all is folly
I Spin

I Make kernel modules much safer
I Then everyone can load and unload modules to run the

monolithic kernel that they need/want
I Mach/L4

I Build an OS out of “servers” (basically kernel modules) in user
space

Monolithic Kernels vs. Mach/L4 style microkernels

User Space

Kernel (monolithic)

FS Pager

Network Stack …

proc

proc
proc

read(handle, buf, etc.)
return

User Space

Kernel (micro)

IPC

Network Stack proc

proc
Pager

FSproc

read(handle, buf, etc.)
return

Discussion Questions

1. Thinking back to the end-to-end argument for system design,
is the kernel the right place to put OS functionality? Is user
space?

2. Do microkernels do anything for OS design that good software
engineering practices wouldn’t?

3. What security/isolation benefits do we achieve by putting
kernel functionality into userspace processes? What threats
remain?

Outline

Microkernels

Mach

L4

The Paper!

What is a Mach?

I Mach provided threads, scheduling, architecture-independent
virtual memory management, and IPC

I plus hooks for user processes to act as syscall handlers for
other user processes

I and hooks for user processes act as pagers for other user
processes

Mach design goals

1. Hardware Abstraction
I ability to build/run other OSes on top of Mach, even

simultaneously!
I in some ways a proto-virtualization layer

2. Modularity
I force more modularity in future OS designs by decoupling

subsystems into separate user space “servers”
3. Security
4. Performance
5. Servicing page faults and syscalls over the network, for some

reason?

How did Mach do?

I Mach seemingly ended up as mostly a substrate for existing
monolithic kernels to run on top of

I Due to performance issues, Mach re-incorporated large chunks
of OS functionality back into the kernel

I The Mach paper reports that BSD-on-Mach outperforms
SunOS handsomely

Discussion Questions

1. We live in the future and we know that even after de-microing
the kernel Mach performance was pretty abysmal. Why do
you think it was so slow?

Outline

Microkernels

Mach

L4

The Paper!

Mach was terrible…

I Mach (and other gen-1 microkernels) performed so terribly
that no one took the idea seriously

I High overheads prevented adoption as a substrate for
monolithic kernels

I High overheads would negate any benefits from creative new
systems built directly on Mach

…but L4 could be better

I IPC needs to be 1-2 orders of magnitude faster
I Address space switches need to be less costly

L4 design goals

1. Hardware Abstraction
2. Modularity
3. Security
4. Performance

I L4 really wanted to prove that microkernels were better than
monolithic kernels

5. Servicing page faults and syscalls over the network, again?

IPC

I Really was an order of magnitude faster than Mach in the first
generation (and it pretty much only got faster)

I Which enabled using IPC to handle hardware interrupts and
syscalls

Address Spaces

I L4 allowed recursive address space construction
I Any process could grant a page in its own address space to

another consenting process
I (this removed the page from the granter’s address space)

I Any process could map a page in its own address space to
another consenting process
I (this kept the page in the granter’s address space, creating a

shared page)
I Processes could unmap any page in their own address space

from all process who had inherited the page directly or
indirectly from the unmapper

I In this way user space servers could perform almost all
memory management functions

Address Spaces

Address Spaces

Discussion Questions

1. Do these abstractions seem flexible enough to support any
operating system on top of them performantly?
I Flexible enough to implement any system someone might care

to actually build?

Outline

Microkernels

Mach

L4

The Paper!

Authors

Jochen Liedtke (1953-2001) invented the L4 microkernel and
worked on several generations of microkernels, from L3 (a
contemporary of Mach) to Hazelnut/Pistachio (a successor to L4).

Overview

I This paper is sort of like a giant evaluation section for the
ongoing L4 project

I Is L4 performant enough to run Linux in userspace with low
overhead?

I Is L4 expressive enough to build better-than-Linux OS
structures?

L4 Linux Overhead

I The overhead is decent and massively improved over Mach

L4 Linux Overhead

I The macrobenchmarks look better than the microbenchmarks

L4 Linux Overhead

Beating Linux

I Chose a simple test: build a good inter-process pipe
I L4 did great, but pipes are exactly what L4 is built to be

really good at

Discussion Questions

1. What are some optimizations that could be built on top of L4
by specializing OS functionality for specific applications?

2. What is an example of a system that would benefit by
co-locating a real time operating system with a timesharing
operating system?

	Microkernels
	Mach
	L4
	The Paper!

