
Concurrency, Threads, and Events

CS 6410: Advanced Systems
Fall 2024

Hakim Weatherspoon

• Hugh C. Lauer
 Adjunct Prof., Worcester Polytechnic Institute
 Xerox, Apollo Computer, Mitsubishi Electronic

Research Lab, etc.
 Founded a number of businesses:

Real-Time Visualization unit of
Mitsubishi Electric Research Labs (MERL)

• Roger M. Needham
 Prof., Cambridge University
 Microsoft Research, Cambridge Lab
 Kerberose, Needham-Schroeder security protocol,

and key exchange systems

On the Duality of Operating System
Structure

• Are they really the same thing?
• Lauer and Needham show
 1) two models are duals

• Mapping exists from one model to other
 2) dual programs are logically identical

• Textually similar
 3) dual programs have identical performance

• Measured in exec time, compute overhead, and queue/wait times

Message vs Procedure oriented systems
(i.e. Events vs Threads)

• Small, static # of process
• Explicit messaging
• Limited data sharing in memory
• Identification of address space or context with

processes

Message-oriented system (Event)

• Characteristics
 Queuing for congested resource
 Data structure passed by reference

(no concurrent access)
 Peripheral devices treated as processes
 Priority of process statically determined
 No global naming scheme is useful

Message-oriented system

• Calls:
 SendMessage, AwaitReply
 SendReply
 WaitForMessage

• Characteristics
 Synchronization via message queues
 No sharing of data structures/address space
 Number of processes static

Message-oriented system

• Canonical model
 begin

Do forever
WaitForMessages
case port

port 1: …;
port 2: …; SendReply; …;

end case
end loop
end

Message-oriented system

• Large # of small processes
• Rapidly changing # of processes
• Communication using direct sharing and interlocking of data
• Identification of context of execution with function being executed

Procedure-Oriented System (Thread)

• Characteristics
 Synchronization and congestion control associates

with waiting for locks
 Data is shared directly and lock lasts for short period

of time
 Control of peripheral devices are in form of

manipulating locks
 Priority is dynamically determined by the execution

context
 Global naming and context is important

Process-oriented system

• Calls:
 Fork, Join (process)
 Wait, Signal (condition variables)

• Characteristics
 Synchronization via locks/monitors
 Share global address space/data structures
 Process (thread) creation very dynamic and low-overhead

Process-oriented system

• Canonical model
 Monitor

-- global data and state info for the process
proc1: ENTRY procedure
proc2: ENTRY procedure returns

begin
If resourceExhausted then WAIT; …;
RETURN result; …;

end
proc L: ENTRY procedure

begin
…; SIGNAL; …

end;
endloop;
initialize;

end

Process-oriented system

Dual Mapping
Event Thread

Processes: CreateProcess Monitors: NEW/START

Message channel External procedure id

Message port Entry procedure id

Send msg (immediate); AwaitReply Simple procedure call

Send msg (delayed); AwaitReply FORK; … JOIN

Send reply Return from procedure
Main loop of std resource manager,
wait for message stmt, case stmt Monitor lock, ENTRY attribute

Arms of case statement ENTRY proc declaration

Selective waiting Condition vars, WAIT, SIGNAL

• Performance characteristics
 Same execution time
 Same computational overhead
 Same queuing and waiting times

• Do you believe they are the same?
• What is the controversy?

Preservation of Performance

• 20 to 30 years later, still controversy!

• Analyzes threads vs event-based systems, finds
problems with both

• Suggests trade-off: stage-driven architecture
• Evaluated for two applications
 Easy to program and performs well

SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services (Welsh, 2001)

• Matt Welsh
 Cornell undergraduate Alum (Worked on U-Net)
 PhD from Berkeley (Worked on Ninja clustering)
 Prof. at Harvard (Worked on sensor networks)
 Currently at Google

• David Culler
 Faculty at UC Berkeley

• Eric Brewer
 Faculty at UC Berkeley (currently VP at Google)

SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services (Welsh, 2001)

• A traditional “process” is an address space and a
thread of control.

• Now add multiple thread of controls
 Share address space
 Individual program counters, registers, and [funcation

call] stacks
• Same as multiple processes sharing an address

space.

What is a thread?

• To switch from thread T1 to T2:
 Thread T1 saves its registers (including pc) on its stack
 Scheduler remembers T1’s stack pointer
 Scheduler restores T2’ stack pointer
 T2 restores its registers
 T2 resumes

Thread Switching

• Maintains the stack pointer of each thread
• Decides what thread to run next
 E.g., based on priority or resource usage

• Decides when to pre-empt a running thread
 E.g., based on a timer

• Needs to deal with multiple cores
 Didn’t use to be the case

• “fork” creates a new thread

Thread Scheduler

• Semaphores
 P(S): block if semaphore is “taken”
 V(S): release semaphore

• Monitors:
 Only one thread active in a module at a time
 Threads can block waiting for some condition using the WAIT primitive
 Threads need to signal using NOTIFY or BROADCAST

Synchronization Primitives

• To exploit CPU parallelism
 Run two threads at once in the same program

• To exploit I/O parallelism
 Run I/O while computing, or do multiple I/O
 I/O may be “remote procedure call”

• For program structuring
 E.g., timers

Uses of threads

• Priority Inversion
 High priority thread waits for low priority thread
 Solution: temporarily push priority up (rejected??)

• Deadlock
 X waits for Y, Y waits for X

• Incorrect Synchronization
 Forgetting to release a lock

• Failed “fork”
• Tuning
 E.g. timer values in different environment

Common Problems

• An object queued for some module
• Operations:
 create_event_queue(handler) EQ
 enqueue_event(EQ, event-object)

• Invokes, eventually, handler(event-object)
• Handler is not allowed to block
 Blocking could cause entire system to block
 But page faults, garbage collection, …

What is an Event?

(Also common in telecommunications industry, where it’s called “workflow
programming”)

Example Event System

• Decides which event queue to handle next.
 Based on priority, CPU usage, etc.

• Never pre-empts event handlers!
 No need for stack / event handler

• May need to deal with multiple CPUs

Event Scheduler

• Handlers cannot block no synchronization
• Handlers should not share memory
 At least not in parallel

• All communication through events

Synchronization?

• CPU parallelism
 Different handlers on different CPUs

• I/O concurrency
 Completion of I/O signaled by event
 Other activities can happen in parallel

• Program structuring
 Not so great…
 But can use multiple programming languages!

Uses of Events

• Priority inversion, deadlock, etc. much the same
with events

• Stack ripping

Common Problems

Threaded Server Throughput

Event-driven Server Throughput

• Events-based systems use fewer resources
 Better performance (particularly scalability)

• Event-based systems harder to program
 Have to avoid blocking at all cost
 Block-structured programming doesn’t work
 How to do exception handling?

• In both cases, tuning is difficult

Threads vs. Events

• Mixture of models of threads and events
• Events, queues, and “pools of event handling

threads”.
• Pools can be dynamically adjusted as need arises.

SEDA

SEDA Stage

• Ease of programming of threads
 Or even better

• Performance of events
 Or even better

• Did we achieve Lauer and Needham’s vision with
SEDA?

Best of both worlds

• Read and write review:

• Check website for presentation schedule

• Gossip miniproj
 Do we need another getting started session?
 Getting started session was today Tue, Sep 10.

• Project Proposal due this week, Thu, Sep 12, Tue, Sep 17
 talk to me and other faculty and email and talk to me

• Check website for updated schedule

Next Time

• Read and write review:
 Required: The Performance of µ-Kernel-based Systems,

Hermann Härtig, Michael Hohmuth, Jochen Liedtke,
Jean Wolter, and Sebastian Schönberg. 16th ACM
Symposium on Operating Systems Principles (SOSP), Oct
1997, pages 66—77.
https://dl.acm.org/doi/10.1145/268998.266660

 Optional: Mach: A new kernel foundation for UNIX
development, Mike Accetta, Robert Baron, William
Bolosky, David Golub, Richard Rashid, Avadis Tevanian,
and Michael Young. Proceedings of the USENIX Summer
Conference, Atlanta, GA, 1986, pages 93—112.
https://ieeexplore.ieee.org/abstract/document/109278

Next Time

https://dl.acm.org/doi/10.1145/268998.266660
https://ieeexplore.ieee.org/abstract/document/109278

		Concurrency, Threads, and Events
	On the Duality of Operating System Structure
	Message vs Procedure oriented systems�(i.e. Events vs Threads)
	Message-oriented system (Event)
	Message-oriented system
	Message-oriented system
	Message-oriented system
	Procedure-Oriented System (Thread)
	Process-oriented system
	Process-oriented system
	Process-oriented system
	Dual Mapping
	Preservation of Performance
	SEDA: An Architecture for Well-Conditioned, Scalable Internet Services (Welsh, 2001)
	SEDA: An Architecture for Well-Conditioned, Scalable Internet Services (Welsh, 2001)
	What is a thread?
	Thread Switching
	Thread Scheduler
	Synchronization Primitives
	Uses of threads
	Common Problems
	What is an Event?
	Example Event System
	Event Scheduler
	Synchronization?
	Uses of Events
	Common Problems
	Threaded Server Throughput
	Event-driven Server Throughput
	Threads vs. Events
	SEDA
	SEDA Stage
	Best of both worlds
	Next Time
	Next Time

