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• Bob Fabry
 Professor at Berkeley. Started CSRG (Computer Science 

Research Group) developed the Berkeley SW Dist 
(BSD)

• Bill Joy
 Key developer of BSD, sent 1BSD in 1977
 Co-Founded Sun in 1982

• Marshall (Kirk) McKusick (Cornell Alum)

 Key developer of the BSD FFS (magic number based on 
his birthday, soft updates, snapshot and fsck. USENIX

• Sam Leffler
 Key developer of BSD, author of Design and 

Implementation

A Fast File System for UNIX
Marshall K. McKusick, William N. Joy, Samuel J Leffler, and Robert S Fabry



• Original UNIX File System (UFS)
 Simple, elegant, but slow
 20 KB/sec/arm; ~2% of 1982 disk bandwidth

• Problems
 blocks too small
 consecutive blocks of files not close together 
 (random placement for mature file system) 
 i-nodes far from data 
 (all i-nodes at the beginning of the disk, all data 

afterward) 
 i-nodes of directory not close together
 no read-ahead

Background: Unix Fast File Sys



• Inode doesn't contain a file name
• Directories map files to inodes
 Multiple directory entries can point to same Inode
 Low-level file system doesn't distinguish files and 

directories
 Separate system calls for directory operations

Inodes and directories



File system on disk
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• Berkeley Unix (4.2BSD)

• 4kB and 8kB blocks 
 (why not larger?)
 Large blocks and small fragments

• Reduces seek times by better placement of file 
blocks
 i-nodes correspond to files
 Disk divided into cylinders

• contains superblock, i-nodes, bitmap of free blocks, summary 
info

 Inodes and data blocks grouped together
 Fragmentation can still affect performance

The Unix Berkeley Fast File System



• Most operations do multiple disk writes
 File write: update block, inode modify time
 Create: write freespace map, write inode, write 

directory entry
• Write-back cache improves performance
 Benefits due to high write locality
 Disk writes must be a whole block
 Syncer process flushes writes every 30s

FFS implementation



• keep dir in cylinder group, spread out different 
dir’s

• Allocate runs of blocks within a cylinder group, 
every once in a while switch to a new cylinder 
group (jump at 1MB).

• layout policy: global and local
 global policy allocates files & directories to cylinder 

groups. Picks “optimal” next block for block allocation.
 local allocation routines handle specific block 

requests. Select from a sequence of alternative if need 
to.

FFS Goals



• don’t let disk fill up in any one area
• paradox: for locality, spread unrelated things far 

apart
• note: FFS got 175KB/sec because free list 

contained sequential blocks 
 (it did generate locality), but an old UFS had 

randomly ordered blocks and only got 30 KB/sec

FFS locality



• 20-40% of disk bandwidth for large reads/writes
• 10-20x original UNIX speeds
• Size: 3800 lines of code vs. 2700 in old system
• 10% of total disk space unusable 

FFS Results



• long file names (14 -> 255)
• advisory file locks (shared or exclusive)
 process id of holder stored with lock => can reclaim 

the lock if process is no longer around
• symbolic links (contrast to hard links)
• atomic rename capability 
 (the only atomic read-modify-write operation, 
 before this there was none)

• Disk Quotas
• Overallocation
 More likely to get sequential blocks; use later if not

FFS Enhancements



• Asynchronous writes are lost in a crash
 Fsync system call flushes dirty data
 Incomplete metadata operations can cause disk 

corruption (order is important)
• FFS metadata writes are synchronous
 Large potential decrease in performance
 Some OSes cut corners

FFS crash recovery



• Fsck file system consistency check
 Reconstructs freespace maps
 Checks inode link counts, file sizes

• Very time consuming
 Has to scan all directories and inodes

After the crash



• Features
 parameterize FS implementation for the HW in use
 measurement-driven design decisions
 locality “wins”

• Flaws
 measurements derived from a single installation.
 ignored technology trends

• Lessons
 Do not ignore underlying HW characteristics

• Contrasting research approach
 Improve status quo vs design something new

Perspective



• Mendel Rosenblum
 Designed LFS, PhD from Berkeley
 Professor at Stanford, designed SimOS
 Founder of VM Ware

• John Ousterhout
 Professor at Berkeley 1980-1994
 Created Tcl scripting language and TK platform
 Research group designed Sprite OS and LFS
 Now professor at Stanford after 14 years in industry

The Design and Impl of a Log-
structured File System

Mendel Rosenblum and John K. Ousterhout



• Technology Trends
 I/O becoming more and more of a bottleneck
 CPU speed increases faster than disk speed
 Big Memories: Caching improves read performance
 Most disk traffic are writes

• Little improvement in write performance
 Synchronous writes to metadata
 Metadata access dominates for small files
 e.g. Five seeks and I/Os to create a file

• file i-node (create), file data, directory entry, file i-node 
(finalize), directory i-node (modification time).

The Log-Structured File System



• Boost write throughput by writing all changes to 
disk contiguously
 Disk as an array of blocks, append at end
 Write data, indirect blocks, inodes together
 No need for a free block map

• Writes are written in segments
 ~1MB of continuous disk blocks
 Accumulated in cache and flushed at once

• Data layout on disk  
 “temporal locality” (good for writing) 
 rather than “logical locality” (good for reading). 
 Why is this a better? 

• Because caching helps reads but not writes!

LFS in a nutshell



Log operation
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Disk



• Increases write throughput from 5-10% of disk to 70%
 Removes synchronous writes
 Reduces long seeks

• Improves over FFS
 "Not more complicated"
 Outperforms FFS except for one case

LFS design



• Log retrieval on cache misses
 Locating inodes

• What happens when end of disk is reached?

LFS challenges



• Positions of data blocks and inodes change on 
each write
 Write out inode, indirect blocks too!

• Maintain an inode map
 Compact enough to fit in main memory
 Written to disk periodically at checkpoints

• Checkpoints (map of inode map) have special location on disk
• Used during crash recovery

Locating inodes



• Log is infinite, but disk is finite
 Reuse the old parts of the log

• Clean old segments to recover space
 Writes to disk create holes
 Segments ranked by "liveness", age
 Segment cleaner "runs in background"

• Group slowly-changing blocks together
 Copy to new segment or "thread" into old

Cleaning the log: “Achilles Heel”



• Simulations to determine best policy
 Greedy: clean based on low utilization
 Cost-benefit: use age (time of last write)

• Measure write cost
 Time disk is busy for each byte written
 Write cost 1.0 = no cleaning

Cleaning policies

Cost-benefit:

Greedy: smallest µ



Greedy versus Cost-benefit



Cost-benefit segment utilization



• Log and checkpointing
 Limited crash vulnerability
 At checkpoint flush active segment, inode map

• No fsck required

LFS crash recovery



• Cleaning behavior better than simulated predictions
• Performance compared to SunOS FFS 
 Create-read-delete 10000 1k files
 Write 100-MB file sequentially, read back sequentially and 

randomly

LFS performance



Small-file performance



Large-file performance



• Features
 CPU speed increasing faster than disk => I/O is bottleneck
 Write FS to log and treat log as truth; use cache for speed
 Problem

• Find/create long runs of (contiguous) disk space to write log
 Solution

• clean live data from segments, 
• picking segments to clean based on a cost/benefit function

• Flaws
 Intra-file Fragmentation: LFS assumes entire files get 

written
 If small files “get bigger”, how would LFS compare to UNIX?

• Lesson
 Assumptions about primary and secondary in a design
 LFS made log the truth instead of just a recovery aid

Perspective



• Papers were separated by 8 years
 Much controversy regarding LFS-FFS comparison

• Both systems have been influential
 IBM Journalling file system
 Ext3 filesystem in Linux
 Soft updates come enabled in FreeBSD
 Solid-state disks (SSD)

Conclusions



• Read and write review:
 Required: On the duality of operating system 

structures, H. C. Lauer and R. M. Needham. ACM 
SIGOPS Operating Systems Review Volume 12, Issue 2, 
April 1979, pages 3-19.

   https://dl.acm.org/doi/10.1145/850657.850658 

 Optional: Capriccio: scalable threads for internet 
services, R. von Behren, J. Condit, F. Zhou, G. C. 
Necula, E. Brewer.ACM SIGOPS Operating Systems 
Review, Volume 37, Issue 5, 2003, pages 268-281. 
https://dl.acm.org/doi/abs/10.1145/1165389.945471 

Next Time

https://dl.acm.org/doi/10.1145/850657.850658
https://dl.acm.org/doi/abs/10.1145/1165389.945471


• Read and write review:

• Sign up to present

• Gossip miniproj
 getting started session today Tue, Sep 10

• Project Proposal due this week, Thu, Sep 12
 talk to me and other faculty and email and talk to me

• Check website for updated schedule

Next Time
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