
Classic File Systems: 
LFS and FFS

CS 6410: Advanced Systems
Fall 2024

Hakim Weatherspoon



• Bob Fabry
 Professor at Berkeley. Started CSRG (Computer Science 

Research Group) developed the Berkeley SW Dist 
(BSD)

• Bill Joy
 Key developer of BSD, sent 1BSD in 1977
 Co-Founded Sun in 1982

• Marshall (Kirk) McKusick (Cornell Alum)

 Key developer of the BSD FFS (magic number based on 
his birthday, soft updates, snapshot and fsck. USENIX

• Sam Leffler
 Key developer of BSD, author of Design and 

Implementation

A Fast File System for UNIX
Marshall K. McKusick, William N. Joy, Samuel J Leffler, and Robert S Fabry



• Original UNIX File System (UFS)
 Simple, elegant, but slow
 20 KB/sec/arm; ~2% of 1982 disk bandwidth

• Problems
 blocks too small
 consecutive blocks of files not close together 
 (random placement for mature file system) 
 i-nodes far from data 
 (all i-nodes at the beginning of the disk, all data 

afterward) 
 i-nodes of directory not close together
 no read-ahead

Background: Unix Fast File Sys



• Inode doesn't contain a file name
• Directories map files to inodes
 Multiple directory entries can point to same Inode
 Low-level file system doesn't distinguish files and 

directories
 Separate system calls for directory operations

Inodes and directories



File system on disk

......

super block 
disk layout

freespace map 
inodes and 
blocks in use

inodes 
inode size < 
block size

data blocks 



File representation

file size
link count
access times
...
data blocks

indirect block
double indirect
triple indirect

data

data

data

data

...

...

...

data

data

data

data

...

...

data

data

data

data

...

...



• Berkeley Unix (4.2BSD)

• 4kB and 8kB blocks 
 (why not larger?)
 Large blocks and small fragments

• Reduces seek times by better placement of file 
blocks
 i-nodes correspond to files
 Disk divided into cylinders

• contains superblock, i-nodes, bitmap of free blocks, summary 
info

 Inodes and data blocks grouped together
 Fragmentation can still affect performance

The Unix Berkeley Fast File System



• Most operations do multiple disk writes
 File write: update block, inode modify time
 Create: write freespace map, write inode, write 

directory entry
• Write-back cache improves performance
 Benefits due to high write locality
 Disk writes must be a whole block
 Syncer process flushes writes every 30s

FFS implementation



• keep dir in cylinder group, spread out different 
dir’s

• Allocate runs of blocks within a cylinder group, 
every once in a while switch to a new cylinder 
group (jump at 1MB).

• layout policy: global and local
 global policy allocates files & directories to cylinder 

groups. Picks “optimal” next block for block allocation.
 local allocation routines handle specific block 

requests. Select from a sequence of alternative if need 
to.

FFS Goals



• don’t let disk fill up in any one area
• paradox: for locality, spread unrelated things far 

apart
• note: FFS got 175KB/sec because free list 

contained sequential blocks 
 (it did generate locality), but an old UFS had 

randomly ordered blocks and only got 30 KB/sec

FFS locality



• 20-40% of disk bandwidth for large reads/writes
• 10-20x original UNIX speeds
• Size: 3800 lines of code vs. 2700 in old system
• 10% of total disk space unusable 

FFS Results



• long file names (14 -> 255)
• advisory file locks (shared or exclusive)
 process id of holder stored with lock => can reclaim 

the lock if process is no longer around
• symbolic links (contrast to hard links)
• atomic rename capability 
 (the only atomic read-modify-write operation, 
 before this there was none)

• Disk Quotas
• Overallocation
 More likely to get sequential blocks; use later if not

FFS Enhancements



• Asynchronous writes are lost in a crash
 Fsync system call flushes dirty data
 Incomplete metadata operations can cause disk 

corruption (order is important)
• FFS metadata writes are synchronous
 Large potential decrease in performance
 Some OSes cut corners

FFS crash recovery



• Fsck file system consistency check
 Reconstructs freespace maps
 Checks inode link counts, file sizes

• Very time consuming
 Has to scan all directories and inodes

After the crash



• Features
 parameterize FS implementation for the HW in use
 measurement-driven design decisions
 locality “wins”

• Flaws
 measurements derived from a single installation.
 ignored technology trends

• Lessons
 Do not ignore underlying HW characteristics

• Contrasting research approach
 Improve status quo vs design something new

Perspective



• Mendel Rosenblum
 Designed LFS, PhD from Berkeley
 Professor at Stanford, designed SimOS
 Founder of VM Ware

• John Ousterhout
 Professor at Berkeley 1980-1994
 Created Tcl scripting language and TK platform
 Research group designed Sprite OS and LFS
 Now professor at Stanford after 14 years in industry

The Design and Impl of a Log-
structured File System

Mendel Rosenblum and John K. Ousterhout



• Technology Trends
 I/O becoming more and more of a bottleneck
 CPU speed increases faster than disk speed
 Big Memories: Caching improves read performance
 Most disk traffic are writes

• Little improvement in write performance
 Synchronous writes to metadata
 Metadata access dominates for small files
 e.g. Five seeks and I/Os to create a file

• file i-node (create), file data, directory entry, file i-node 
(finalize), directory i-node (modification time).

The Log-Structured File System



• Boost write throughput by writing all changes to 
disk contiguously
 Disk as an array of blocks, append at end
 Write data, indirect blocks, inodes together
 No need for a free block map

• Writes are written in segments
 ~1MB of continuous disk blocks
 Accumulated in cache and flushed at once

• Data layout on disk  
 “temporal locality” (good for writing) 
 rather than “logical locality” (good for reading). 
 Why is this a better? 

• Because caching helps reads but not writes!

LFS in a nutshell



Log operation

inode blocks data blocks

active segment

log

Kernel buffer cache

log head log tail

Disk



• Increases write throughput from 5-10% of disk to 70%
 Removes synchronous writes
 Reduces long seeks

• Improves over FFS
 "Not more complicated"
 Outperforms FFS except for one case

LFS design



• Log retrieval on cache misses
 Locating inodes

• What happens when end of disk is reached?

LFS challenges



• Positions of data blocks and inodes change on 
each write
 Write out inode, indirect blocks too!

• Maintain an inode map
 Compact enough to fit in main memory
 Written to disk periodically at checkpoints

• Checkpoints (map of inode map) have special location on disk
• Used during crash recovery

Locating inodes



• Log is infinite, but disk is finite
 Reuse the old parts of the log

• Clean old segments to recover space
 Writes to disk create holes
 Segments ranked by "liveness", age
 Segment cleaner "runs in background"

• Group slowly-changing blocks together
 Copy to new segment or "thread" into old

Cleaning the log: “Achilles Heel”



• Simulations to determine best policy
 Greedy: clean based on low utilization
 Cost-benefit: use age (time of last write)

• Measure write cost
 Time disk is busy for each byte written
 Write cost 1.0 = no cleaning

Cleaning policies

Cost-benefit:

Greedy: smallest µ



Greedy versus Cost-benefit



Cost-benefit segment utilization



• Log and checkpointing
 Limited crash vulnerability
 At checkpoint flush active segment, inode map

• No fsck required

LFS crash recovery



• Cleaning behavior better than simulated predictions
• Performance compared to SunOS FFS 
 Create-read-delete 10000 1k files
 Write 100-MB file sequentially, read back sequentially and 

randomly

LFS performance



Small-file performance



Large-file performance



• Features
 CPU speed increasing faster than disk => I/O is bottleneck
 Write FS to log and treat log as truth; use cache for speed
 Problem

• Find/create long runs of (contiguous) disk space to write log
 Solution

• clean live data from segments, 
• picking segments to clean based on a cost/benefit function

• Flaws
 Intra-file Fragmentation: LFS assumes entire files get 

written
 If small files “get bigger”, how would LFS compare to UNIX?

• Lesson
 Assumptions about primary and secondary in a design
 LFS made log the truth instead of just a recovery aid

Perspective



• Papers were separated by 8 years
 Much controversy regarding LFS-FFS comparison

• Both systems have been influential
 IBM Journalling file system
 Ext3 filesystem in Linux
 Soft updates come enabled in FreeBSD
 Solid-state disks (SSD)

Conclusions



• Read and write review:
 Required: On the duality of operating system 

structures, H. C. Lauer and R. M. Needham. ACM 
SIGOPS Operating Systems Review Volume 12, Issue 2, 
April 1979, pages 3-19.

   https://dl.acm.org/doi/10.1145/850657.850658 

 Optional: Capriccio: scalable threads for internet 
services, R. von Behren, J. Condit, F. Zhou, G. C. 
Necula, E. Brewer.ACM SIGOPS Operating Systems 
Review, Volume 37, Issue 5, 2003, pages 268-281. 
https://dl.acm.org/doi/abs/10.1145/1165389.945471 

Next Time

https://dl.acm.org/doi/10.1145/850657.850658
https://dl.acm.org/doi/abs/10.1145/1165389.945471


• Read and write review:

• Sign up to present

• Gossip miniproj
 getting started session today Tue, Sep 10

• Project Proposal due this week, Thu, Sep 12
 talk to me and other faculty and email and talk to me

• Check website for updated schedule

Next Time


	Classic File Systems: �LFS and FFS
	A Fast File System for UNIX�Marshall K. McKusick, William N. Joy, Samuel J Leffler, and Robert S Fabry
	Background: Unix Fast File Sys
	Inodes and directories
	File system on disk
	File representation
	The Unix Berkeley Fast File System
	FFS implementation
	FFS Goals
	FFS locality
	FFS Results
	FFS Enhancements
	FFS crash recovery
	After the crash
	Perspective
	The Design and Impl of a Log-structured File System�Mendel Rosenblum and John K. Ousterhout
	The Log-Structured File System
	LFS in a nutshell
	Log operation
	LFS design
	LFS challenges
	Locating inodes
	Cleaning the log: “Achilles Heel”
	Cleaning policies
	Greedy versus Cost-benefit
	Cost-benefit segment utilization
	LFS crash recovery
	LFS performance
	Small-file performance
	Large-file performance
	Perspective
	Conclusions
	Next Time
	Next Time

