
Classic Systems: UNIX and THE

CS 6410: Advanced Systems
Fall 2024

Hakim Weatherspoon

2

• Background of authors at Bell Labs
 Both won Turing Awards in 1983

• Dennis Ritchie
 Key developer of The C Programming Lanuage, Unix,

and Multics
• Ken Thompson
 Key developer of the B programming lanuage,

Unix, Multics, and Plan 9
 Also QED, ed, UTF-8

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

3

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

5

• Classic system and paper
 described almost entirely in 10 pages

• Key idea
 elegant combination: a few concepts

that fit together well
 Instead of a perfect specialized API for each kind of

device or abstraction, the API is deliberately small

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

6

• Time-sharing system
• Hierarchical file system
• Device-independent I/O
• Shell-based, tty user interface
• Filter-based, record-less processing paradigm

• Major early innovations: “fork” system call for
process creation, file I/O via a single subsystem,
pipes, I/O redirection to support chains

System features

7

• 1969: Version 1 ran PDP-7
• 1971: Version 3 Ran on PDP-11’s
 Costing as little as $40k!

• < 50 KB
• 2 man-years
 to write
• Written in C

Version 3 Unix

PDP-7 PDP-11

8

• Ordinary files (uninterpreted)
• Directories (protected ordinary files)
• Special files (I/O)

File System

9

• open, close, read, write, seek
 Uniform calls eliminates differences between devices
 Two categories of files: character (or byte) stream and

block I/O, typically 512 bytes per block
• other system calls
 close, status, chmod, mkdir, ln

• One way to “talk to the device” more directly
 ioctl, a grab-bag of special functionality

• lowest level data type is raw bytes, not “records”

Uniform I/O Model

10

• root directory
• path names
• rooted tree
• current working directory
• back link to parent
• multiple links to ordinary files

Directories

11

• Uniform I/O model
 Each device associated with at least one file
 But read or write of file results in activation of device

• Advantage: Uniform naming and protection
model
 File and device I/O are as similar as possible
 File and device names have the same syntax and

meaning, can pass as arguments to programs
 Same protection mechanism as regular files

Special Files

12

• Tree-structured
• Mount’ed on an ordinary file
 Mount replaces a leaf of the hierarchy tree (the

ordinary file) by a whole new subtree (the hierarchy
stored on the removable volume)

 After mount, virtually no distinction between files on
permanent media or removable media

Removable File System

13

• User-world, RWX bits
• set-user-id bit
• super user is just special user id

Protection

14

• System table of i-numbers (i-list)
• i-nodes
• path names

(directory is just
a special file!)

• mount table
• buffered data
• write-behind

File System Implementation

15

• short, unique name that points at file info.
• allows simple & efficient fsck
• cannot handle accounting issues

I-node Table

File name Inode# Inode

16

• Disks
• Drums
• Tape drives
• USB storage

• Early version of the ethernet interface was
presented as a kind of block device (seek
disabled)

• But many devices used IOCTL operations heavily

Many devices fit the block model

17

• text, data & stack segments
• process swapping
• pid = fork()
• pipes
• exec(file, arg1, ..., argn)
• pid = wait()
• exit(status)

Processes and images

18

• A “pipe” is a process-to-process data stream,
could be implemented via bounded buffers, TCP,
etc

• One process can write on a connection that
another reads, allowing chains of commands

 % cat *.txt | grep foo | wc

• In combination with an easily programmable
shell scripting model, very powerful!

Easy to create pipelines

19

• cmd arg1 ... argn
• stdio & I/O redirection
• filters & pipes
• multi-tasking from a single shell
• shell is just a program

• Trivial to implement in shell
 Redirection, background processes, cmd files, etc

The Shell

20

• Hardware interrupts
• Software signals
• Trap to system routine

Traps

21

• Not designed to meet predefined objective
• Goal: create a comfortable environment to

explore machine and operating system
• Other goals
 Programmer convenience
 Elegance of design
 Self-maintaining

Perspective

22

• But had many problems too. Here are a few:
 Weak, rather permissive security model
 File names too short and file system damaged on crash
 Didn’t plan for threads and never supported them well
 “Select” system call and handling of “signals” was ugly

and out of character w.r.t. other features
 Hard to add dynamic libraries (poor handling of

processes with lots of “segments”)
 Shared memory and mapped files fit model poorly

• ...in effect, the initial simplicity was at least partly
because of some serious limitations!

Perspective

23

• Today’s Linux systems are far more comprehensive
yet the core simplicity of Unix API remains a very
powerful force

• Struggle to keep things simple has helped keep O/S
developers from making the system specialized in
every way, hard to understand

• Even with modern extensions, Unix has a simplicity
that contrasts with Windows .NET API... Win32 is
really designed as an internal layer that libraries
invoke, but that normal users never encounter.

Even so, Unix has staying power!

• Received Turing Award in 1972

• Contributions
 Shortest Path Algorithm, Reverse Polish Notation,

Bankers algorithm, semaphore’s, self-stabilization

• Known for disliking ‘goto’ statements and using
computers!

“THE”-Multiprogramming System
Edsger W. Dijkstra

• Never named “THE” system; instead,
abbreviation for "Technische Hogeschool
Eindhoven”

• Batch system (no human intervention) that
supported multitasking (processes share CPU)
 THE was not multiuser

• Introduced
 software-based memory segmentation
 Cooperating sequential processes
 semaphores

“THE”-Multiprogramming System
Edsger W. Dijkstra

• Layered structure
 Later Multics has layered structure, ring segmentation

• Layer 0 – the scheduler
 Allocated CPU to processes, accounted for blocked

proc’s
• Layer 1 – the pager
• Layer 2 – communication between OS and

console
• Layer 3 – managed I/O
• Layer 4 – user programs
• Layer 5 – the user
 “Not implemented by us”!

Design

• Layered approach
 Design small, well defined layers
 Higher layers dependent on lower ones

• Helps prove correctness
• Helps with debugging

• Sequential process and Semaphores

Perspective

• Read and write review for Thu, Sep 10:
 Required The Design and Implementation of a Log-

Structured File System, Mendel Rosenblum and
Ousterhout. Proceedings of the thirteenth ACM
symposium on Operating systems principles, October
1991, pages 1--15.On the duality of operating system
structures, H. C. Lauer and R. M. Needham. ACM
SIGOPS Operating Systems Review Volume 12, Issue 2
(April 1979), pages 3--19.

 Optional: A Fast File System for UNIX. Marshall K.
McKusick, William N. Joy, Samuel J. Leffler, Robert S.
Fabry. ACM TOCS 2(3), Aug 1984, pages 181--197.

Next Time

	Classic Systems: UNIX and THE
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	System features
	Version 3 Unix
	File System
	Uniform I/O Model
	Directories
	Special Files
	Removable File System
	Protection
	File System Implementation
	I-node Table
	Many devices fit the block model
	Processes and images
	Easy to create pipelines
	The Shell
	Traps
	Perspective
	Perspective
	Even so, Unix has staying power!
	“THE”-Multiprogramming System�Edsger W. Dijkstra
	Slide Number 25
	Design
	Perspective
	Next Time

