Classic Systems: UNIX and THE

CS 6410: Advanced Systems
Fall 2024
Hakim Weatherspoon

Cornell Bowers C1S
Computer Science

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

* Background of authors at Bell Labs
= Both won Turing Awards in 1983

* Dennis Ritchie
= Key developer of The C Programming Lanuage, Unix,
and Multics
* Ken Thompson

= Key developer of the B programming lanuage,
Unix, Multics, and Plan 9

= Also QED, ed, UTF-8

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

1970 1980 1990 2000 Time -
| FreesB5D 1.2
. —=| NetBSD 3,0
BSD family
—— = OpenBSh 4.5
—»{ BSD (Berkeley Software Distribution)
Bill Joy :
—I-|Sur'|DS (Stanford) Solaris (SUN) 10 5/08
Darwin -
»NextStep 3.3 FFFFFFFT I I IT7
+ = MacOs X o
—®= Xenix 05
Microsoft/SCO GNU/Murd K1 5
GNU Project
Richard Stallman _ g GNU/LINUx 26.301
Minix | Linus Torvalds 31.3g
Andrew S, Tanenbaum -~
Unix Time-Sharing System (Bell Labs) 10
Ken Thompson -
Dennis Ritchie (C language) HP-UX 1liv3
| AlX (IBM) 5.1
| UnixWare (Univel/SCO) 7.1.4 MP4
= [RIX (SGI) 6.5 .30

Cvuestam 1l & VWV famiilv

The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

1969
1969

- Open Source

|:| Mixed,/Shared Source | 1971101973

1971 to 1973

1974 to 1975 UnixTSS

5to 6 PWB/Unix - Closed Source 1974 to 1975
1978
1978
BSD
1.0to 2.0 UnixTSS
1979 7
- 1979
| Unix 32v
1980
BSD 1980
1981 3.0to4.1 Los1
1982 1982
1083 BSD 4.2 1083
1984 1984
UnixTSS
1985 8 1985
1986 1086
1987 UnixTSS
1988 T Sha;ing BSD 4.3 =
System 4.
ngn 10 Tahoe 1988
1989 1989
BSD 4.3
1990 Reno 1990
1991 Linux 0.0.1 R 2 1991
386BSD 1992
1992 _
. NetBSD
Linux 0.8to1.0
1993 095to1l 1993
. A A 1994
FreeBSD d e
1994 1.0 to
NetBSD
1995 OpenBSD 1995
1l1tol.2 10t02.2
1996 1996
1997 NetBSD 1.3 1997
1998 1998
Mini .
inux
- . 1999
2000 201t02.6.x OpenBSD
23 to4.x 2000

2001 to 2004
2005

2001 to 2004
Mac 0S X
. 10.0 to 10.6
Minix (Darwin)
3.x

2005

2006 to 2010 2006 to 2

The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

* Classic system and paper
= described almost entirely in 10 pages

* Keyidea
= elegant combination: a few concepts
that fit together well

= |nstead of a perfect specialized API for each kind of
device or abstraction, the APl is deliberately small

System features
Time-sharing system
Hierarchical file system
Device-independent I/O
Shell-based, tty user interface
Filter-based, record-less processing paradigm

Major early innovations: “fork” system call for
process creation, file I/O via a single subsystem,
pipes, 1/0 redirection to support chains

Version 3 Unix

e 1969: Version 1 ran PDP-7

e 1971: Version 3 Ran on PDP-11’s
= Costing as little as S40k!

* <50KB

* 2 man-years
to write

* Writtenin C

File System

* Ordinary files (uninterpreted)
* Directories (protected ordinary files)
* Special files (1/0)

Uniform 1I/O Model

e open, close, read, write, seek
= Uniform calls eliminates differences between devices

= Two categories of files: character (or byte) stream and
block I/0O, typically 512 bytes per block

e other system calls
= close, status, chmod, mkdir, In

* One way to “talk to the device” more directly
= joctl, a grab-bag of special functionality

* lowest level data type is raw bytes, not “records”

Directories

root directory

path names

rooted tree

current working directory
back link to parent

multiple links to ordinary files

10

Special Files

* Uniform I/O model
= Each device associated with at least one file
= But read or write of file results in activation of device

* Advantage: Uniform naming and protection

model
= File and device I/O are as similar as possible

= File and device names have the same syntax and
meaning, can pass as arguments to programs

= Same protection mechanism as regular files

11

Removable File System

e Tree-structured

* Mount’ed on an ordinary file

= Mount replaces a leaf of the hierarchy tree (the
ordinary file) by a whole new subtree (the hierarchy
stored on the removable volume)

= After mount, virtually no distinction between files on
permanent media or removable media

bin dev lib mnt usr bin dev lib

(a) (b)

12

Protection

 User-world, RWX bits
e set-user-id bit
e super user is just special user id

13

File System Implementation
System table of i-numbers (i-list)

I-nodes

path names
(directory is just
a special file!)
mount table
buffered data

write-behind

directory struct
open (file name)
ey file-control block
I spac kernel memor y secondary storag
(a)
N]
|]
r | / data blocks
d (index) ~—]
per-process system-wide file-control block
open-file tabl open-file table
I spac kernel memory dary storag
(b)

14

I-node Table

* short, unique name that points at file info.
e allows simple & efficient fsck
e cannot handle accounting issues

e — 8

Many devices fit the block model

Disks
Drums

Tape drives
USB storage

Early version of the ethernet interface was

presented as a kind of block device (seek
disabled)

But many devices used IOCTL operations heavily

16

Processes and images
text, data & stack segments

0rocess swapping

oid = fork()

nipes

exec(file, argl, ..., argn)
pid = wait()

exit(status)

17

Easy to create pipelines

A “pipe” is a process-to-process data stream,

could be implemented via bounded buffers, TCP,
etc

* One process can write on a connection that
another reads, allowing chains of commands

% cat *.txt | grep foo | wc

* In combination with an easily programmable
shell scripting model, very powerful!

18

The Shell

cmd argl ... argn

stdio & I/O redirection

filters & pipes

multi-tasking from a single shell
shell is just a program

Trivial to implement in shell
= Redirection, background processes, cmmd files, etc

19

Traps
 Hardware interrupts

e Software signals
* Trap to system routine

20

Perspective

* Not desighed to meet predefined objective

e Goal: create a comfortable environment to
explore machine and operating system
e Other goals
= Programmer convenience

= Elegance of design
= Self-maintaining

21

Perspective

 But had many problems too. Here are a few:
= Weak, rather permissive security model
= File names too short and file system damaged on crash
= Didn’t plan for threads and never supported them well

= “Select” system call and handling of “signals” was ugly
and out of character w.r.t. other features

= Hard to add dynamic libraries (poor handling of
processes with lots of “segments”)

= Shared memory and mapped files fit model poorly
e ...in effect, the initial simplicity was at least partly
because of some serious limitations!

22

Even so, Unix has staying

power!

* Today’s Linux systems are far more comprehensive
yet the core simplicity of Unix APl remains a very

powerful force

* Struggle to keep things simple has h
developers from making the system
every way, hard to understand

 Even with modern extensions, Unix
that contrasts with Windows .NET A
really designed as an internal layer t
invoke, but that normal users never

elped keep O/S
specialized in

nas a simplicity
Pl... Win32is
nat libraries
encounter.

23

“THE”-Multiprogramming System
Edsger W. Dijkstra
* Received Turing Award in 1972

e Contributions

= Shortest Path Algorithm, Reverse Pol|sh Notatlon
Bankers algorithm, semaphore’s, self-stabilization

* Known for disliking ‘goto’ statements and using
computers!

“THE”-Multiprogramming System
Edsger W. Dijkstra
* Never named “THE” system; instead,
abbreviation for "Technische Hogeschool

Eindhoven”

e Batch system (no human intervention) that
supported multitasking (processes share CPU)
= THE was not multiuser

* Introduced
= software-based memory segmentation
= Cooperating sequential processes
= semaphores

Design

* Layered structure
= |Later Multics has layered structure, ring segmentation

* Layer O —the scheduler
= Allocated CPU to processes, accounted for blocked

proc’s
* Layer 1 —the pager
e Layer 2 —communication between OS and
console
* Layer 3 —managed |/O
e Layer 4 — user programs

 Layer 5 —the user
= “Not implemented by us”!

Perspective

* Layered approach
= Design small, well defined layers

= Higher layers dependent on lower ones
* Helps prove correctness
* Helps with debugging

e Sequential process and Semaphores

Next Time

* Read and write review for Thu, Sep 10:

= Required The Design and Implementation of a Log-
Structured File System, Mendel Rosenblum and
Ousterhout. Proceedings of the thirteenth ACM
symposium on Operating systems principles, October
1991, pages 1--15.0n the duality of operating system
structures, H. C. Lauer and R. M. Needham. ACM
SIGOPS Operating Systems Review Volume 12, Issue 2
(April 1979), pages 3--19.

= Optional: A Fast File System for UNIX. Marshall K.
McKusick, William N. Joy, Samuel J. Leffler, Robert S.
Fabry. ACM TOCS 2(3), Aug 1984, pages 181--197.

	Classic Systems: UNIX and THE
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	System features
	Version 3 Unix
	File System
	Uniform I/O Model
	Directories
	Special Files
	Removable File System
	Protection
	File System Implementation
	I-node Table
	Many devices fit the block model
	Processes and images
	Easy to create pipelines
	The Shell
	Traps
	Perspective
	Perspective
	Even so, Unix has staying power!
	“THE”-Multiprogramming System�Edsger W. Dijkstra
	Slide Number 25
	Design
	Perspective
	Next Time

