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The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

* Background of authors at Bell Labs
= Both won Turing Awards in 1983

* Dennis Ritchie
= Key developer of The C Programming Lanuage, Unix,
and Multics
* Ken Thompson

= Key developer of the B programming lanuage,
Unix, Multics, and Plan 9

= Also QED, ed, UTF-8
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The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

* Classic system and paper
= described almost entirely in 10 pages

* Keyidea
= elegant combination: a few concepts
that fit together well

= |nstead of a perfect specialized API for each kind of
device or abstraction, the APl is deliberately small



System features
Time-sharing system
Hierarchical file system
Device-independent I/O
Shell-based, tty user interface
Filter-based, record-less processing paradigm

Major early innovations: “fork” system call for
process creation, file I/O via a single subsystem,
pipes, 1/0 redirection to support chains



Version 3 Unix

e 1969: Version 1 ran PDP-7

e 1971: Version 3 Ran on PDP-11’s
= Costing as little as S40k!

* <50KB

* 2 man-years
to write

* Writtenin C




File System

* Ordinary files (uninterpreted)
* Directories (protected ordinary files)
* Special files (1/0)



Uniform 1I/O Model

e open, close, read, write, seek
= Uniform calls eliminates differences between devices

= Two categories of files: character (or byte) stream and
block I/0O, typically 512 bytes per block

e other system calls
= close, status, chmod, mkdir, In

* One way to “talk to the device” more directly
= joctl, a grab-bag of special functionality

* lowest level data type is raw bytes, not “records”



Directories

root directory

path names

rooted tree

current working directory
back link to parent

multiple links to ordinary files
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Special Files

* Uniform I/O model
= Each device associated with at least one file
= But read or write of file results in activation of device

* Advantage: Uniform naming and protection

model
= File and device I/O are as similar as possible

= File and device names have the same syntax and
meaning, can pass as arguments to programs

= Same protection mechanism as regular files
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Removable File System

e Tree-structured

* Mount’ed on an ordinary file

= Mount replaces a leaf of the hierarchy tree (the
ordinary file) by a whole new subtree (the hierarchy
stored on the removable volume)

= After mount, virtually no distinction between files on
permanent media or removable media

bin dev lib mnt  usr bin dev lib

(a) (b)
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Protection

 User-world, RWX bits
e set-user-id bit
e super user is just special user id
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File System Implementation
System table of i-numbers (i-list)

I-nodes

path names
(directory is just
a special file!)
mount table
buffered data

write-behind

directory struct
open (file name)
ey file-control block
I spac kernel memor y secondary storag
(a)
N ]
| ]
r | / data blocks
d (index) ~—]
per-process system-wide file-control block
open-file tabl open-file table
I spac kernel memory dary storag
(b)
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I-node Table

* short, unique name that points at file info.
e allows simple & efficient fsck
e cannot handle accounting issues

e — 8




Many devices fit the block model

Disks
Drums

Tape drives
USB storage

Early version of the ethernet interface was

presented as a kind of block device (seek
disabled)

But many devices used IOCTL operations heavily
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Processes and images
text, data & stack segments

0rocess swapping

oid = fork()

nipes

exec(file, argl, ..., argn)
pid = wait()

exit(status)
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Easy to create pipelines

A “pipe” is a process-to-process data stream,

could be implemented via bounded buffers, TCP,
etc

* One process can write on a connection that
another reads, allowing chains of commands

% cat *.txt | grep foo | wc

* In combination with an easily programmable
shell scripting model, very powerful!
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The Shell

cmd argl ... argn

stdio & I/O redirection

filters & pipes

multi-tasking from a single shell
shell is just a program

Trivial to implement in shell
= Redirection, background processes, cmmd files, etc

19



Traps
 Hardware interrupts

e Software signals
* Trap to system routine
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Perspective

* Not desighed to meet predefined objective

e Goal: create a comfortable environment to
explore machine and operating system
e Other goals
= Programmer convenience

= Elegance of design
= Self-maintaining
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Perspective

 But had many problems too. Here are a few:
= Weak, rather permissive security model
= File names too short and file system damaged on crash
= Didn’t plan for threads and never supported them well

= “Select” system call and handling of “signals” was ugly
and out of character w.r.t. other features

= Hard to add dynamic libraries (poor handling of
processes with lots of “segments”)

= Shared memory and mapped files fit model poorly
e ...in effect, the initial simplicity was at least partly
because of some serious limitations!
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Even so, Unix has staying

power!

* Today’s Linux systems are far more comprehensive
yet the core simplicity of Unix APl remains a very

powerful force

* Struggle to keep things simple has h
developers from making the system
every way, hard to understand

 Even with modern extensions, Unix
that contrasts with Windows .NET A
really designed as an internal layer t
invoke, but that normal users never

elped keep O/S
specialized in

nas a simplicity
Pl... Win32is
nat libraries
encounter.
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“THE”-Multiprogramming System
Edsger W. Dijkstra
* Received Turing Award in 1972

e Contributions

= Shortest Path Algorithm, Reverse Pol|sh Notatlon
Bankers algorithm, semaphore’s, self-stabilization

* Known for disliking ‘goto’ statements and using
computers!



“THE”-Multiprogramming System
Edsger W. Dijkstra
* Never named “THE” system; instead,
abbreviation for "Technische Hogeschool

Eindhoven”

e Batch system (no human intervention) that
supported multitasking (processes share CPU)
= THE was not multiuser

* Introduced
= software-based memory segmentation
= Cooperating sequential processes
= semaphores



Design

* Layered structure
= |Later Multics has layered structure, ring segmentation

* Layer O —the scheduler
= Allocated CPU to processes, accounted for blocked

proc’s
* Layer 1 —the pager
e Layer 2 —communication between OS and
console
* Layer 3 —managed |/O
e Layer 4 — user programs

 Layer 5 —the user
= “Not implemented by us”!




Perspective

* Layered approach
= Design small, well defined layers

= Higher layers dependent on lower ones
* Helps prove correctness
* Helps with debugging

e Sequential process and Semaphores



Next Time

* Read and write review for Thu, Sep 10:

= Required The Design and Implementation of a Log-
Structured File System, Mendel Rosenblum and
Ousterhout. Proceedings of the thirteenth ACM
symposium on Operating systems principles, October
1991, pages 1--15.0n the duality of operating system
structures, H. C. Lauer and R. M. Needham. ACM
SIGOPS Operating Systems Review Volume 12, Issue 2
(April 1979), pages 3--19.

= Optional: A Fast File System for UNIX. Marshall K.
McKusick, William N. Joy, Samuel J. Leffler, Robert S.
Fabry. ACM TOCS 2(3), Aug 1984, pages 181--197.
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