
Systems End-to-end argument and
Design Hints

CS 6410: Advanced Systems
Fall 2024

Hakim Weatherspoon

• The study of tradeoffs
 Functionality vs performance
 E.g. where to place error checking

• Are there principles or rules of thumb that can
help with large systems design?

Systems Research

What is System Design: Science, Art, Puzzle?

Required
Functionality

“Logic”

Expected
Workload

“User Load”

Required
Performance

“SLA”

Available
Resources

“Environm
ent”

Something to do with “Abstraction”

IMPLEMENTATION GOES HEREINTERFACE
(HIDES IMPLEMENTATION)

Also, “Layering” (layered modules)

From: http://www.tutorialspoint.com/operating_system/os_linux.htm

• Attributed to David Wheeler (by Butler Lampson)

Any problem in computer science can be
solved with another level of indirection

Functionality vs Assurance

Assurance
== Required Performance (Speed, Fault Tolerance)
== Service Level Agreement (SLA)

• Jerry H. Saltzer
 A leader of Multics, key developer of the Internet, and

a LAN (local area network) ring topology, project
Athena

• David P. Reed
 Early development of TCP/IP, designer of UDP

• David D. Clark
 I/O of Multics, Protocol architect of Internet

“We reject: kings, presidents and voting.
We believe in: rough consensus and running code.”

End-to-End arguments in System Design –
Jerry H. Saltzer, David P. Reed, David D. Clark (MIT)

End-to-End argument
• Helps guide function placement among modules

of a distributed system
• Argument
 implement the functionality in the lower layer only if

• a large number of higher layers / applications use this
functionality and implementing it at the lower layer improves
the performance of many of them, AND

• does not hurt the remaining applications

Example : File Transfer (A to B)

A B

1. Read File Data blocks
2. App buffers File Data
3. Pass (copy) data to the
network subsystem

4. Pass msg/packet down the protocol
stack

5. Send the packet over the network

6. Route packet

Example : File Transfer (A to B)

A B
7. Receive packet and buffer msg.
8. Send data to the application

9. Store file data blocks

• Reading and writing to disk
• Transient errors in the memory chip while

buffering and copying
• network might drop packets, modify bits, deliver

duplicates
• OS buffer overflow at the sender or the receiver
• Either of the hosts may crash

Possible failures

Solution: make the network reliable?
• Packet checksums, sequence numbers, retry,

duplicate elimination
 Example: TCP

• Solves only the network problem
• What about the other problems listed?
• Not sufficient and not necessary

Solution: end-to-end retransmission?
• Introduce file checksums and verify once transfer

completes – end-to-end check.
 On failure – retransmit file
 Works! (modulo rotting bits on disk)

Is network-level reliability useful?
• Per-link retransmission leads to faster recovery

from dropped packets than end-to-end
• Seems particularly useful in wireless networks or

very high latency networks
• But this may not benefit all applications
 Huge unnecessary overhead for, say, Real-Time speech

transmission

• Transmission Control Protocol (TCP)
 It is a transport protocol providing error detection,

retransmission, congestion control, and flow control
 TCP is almost-end-to-almost-end

• kernel-to-kernel, socket-to-socket, but not app-to-app

• Internet Protocol (IP)
 IP is a simple ("dumb"), stateless protocol that moves

datagrams across the network
 The network itself (the routers) needs only to support

the simple, lightweight IP; the endpoints run the
heavier TCP on top of it when needed.

TCP/IP

• End-to-end authentication
 TLS, SSL

• Duplicate msg suppression

Other end-to-end examples

Is argument complete?

• E.g. congestion control
 TCP leaves it to the ends

• Should the network trust the ends?
 RED

• In a wireless setting
 packet loss != congestion

• performance problems may appear in end-end
systems under heavy load

• Performance enhancing Proxies

• Based on author’s experience in systems design
• Founding member of Xerox PARC (1970)
• Technical Fellow at MSR and adjunct prof. at MIT
• Winner of ACM Turing Award (1994). IEEE Von

Neumann Medal (2001)
• Was involved in the design of many famous

systems, including databases and networks

“Hints for Computer System Design”
--- Butler Lampson, 1983

• Charles Simonyi - Bravo: WYSIWYG editor (MS Office)

• Bob Sproull - Alto operating system, Dover: laser printer,
Interpress: page description language (VP Sun/Oracle)

• Mel Pirtle - 940 project, Berkeley Computer Corp.

• Peter Deutsch - 940 operating system, QSPL: system programming
language (founder of Ghostscript)

• Chuck Geschke, Jim Mitchell, Ed Satterthwaite - Mesa: system
programming language

Some Projects & Collaborators

• Roy Levin - Wildflower: Star workstation prototype, Vesta:
software configuration

• Andrew Birrell, Roger Needham, Mike Schroeder - Global name
service and authentication

• Eric Schmidt - System models: software configuration
 (CEO/Chairman of Google/Executive Chairman of Alphabet)

• Rod Burstall - Pebble: polymorphic typed language

Some Projects & Collaborators (cont.)

• Why:
 Functionality: does it work?
 Speed: is it fast enough?
 Fault-tolerance: does it keep working?

• Where:
 Completeness
 Interface
 Implementation

System Design Hints organized along
two axes: Why and Where

Hints for Computer System Design - Butler Lampson

• Interface
 Between user and implementation of an abstraction
 Contract, consisting of a set of assumptions about

participants
• Assume-Guarantees specification

 Same interface may have multiple implementations
• Requirements:
 Simple but complete
 Admit efficient implementation

• Examples: Posix File System Interface, Network
Sockets, SQL, …

• Lampson: “Interface is a small programming language”
 Do we agree with this?

FUNCTIONALITY

• Attributed to aircraft engineer Kelly Johnson (1910—
1990)

• Based on observation: systems work best if they are
kept simple

• Related:
 Make everything as simple as possible, but not simpler

(Einstein)
 It seems that perfection is reached not when there is nothing

left to add, but when there is nothing left to take away
(Antoine de Saint Exupéry)

 If in doubt, leave it out (Anon.)
 Complexity is the Enemy: Exterminate Features (Charles

Thacker)
 The unavoidable price of reliability is simplicity (Tony Hoare)

Keep it Simple Stupid (KISS Principle)

• A complex interface is hard to implement
correctly, efficiently

• Don’t penalize all for wishes by just a few
• Basic (fast) operations rather than

generic/powerful (slow) ones
• Good interface admits implementation that is
 Correct
 Efficient
 Predictable Performance

• Simple does not imply good
 A simple but badly designed interface makes it hard to

build applications that perform well and/or predictably

Do one thing at a time, and do it well
Don’t generalize

Get it right!

• Design basic interfaces that admit implementations
that are fast
 Consider monolithic O.S. vs. microkernels

• Clients can implement the rest
• Abstraction should hide only undesirable properties
 What are examples of undesirable?

• Non-portable

• Don’t tell clients about implementation details they
can exploit
 Leads to non-portability, applications breaking when

modules are updated, etc.
 Bad example: TCP

Leave it to the Client

Don’t Hide Power
Keep Secrets

• High-level functions passed as arguments
 Requires some kind of interpreter within the abstraction
 Hard to secure

• Requires safe language or sandboxing

Use procedure arguments

• Ideally do not change interfaces
 Extensions are ok

• If you have to change the interface, provide a
backward compatibility option
 Good example: Microsoft Windows

Keep basic interfaces stable
Keep a place to stand

• Prototyping is often a good strategy in system design
• You end up building a series of prototypes
• The same good idea may be usable in multiple contexts
• Example: Unix developed this way, leading to Linux, Mac

OS X, and several others

Plan to throw one away
Use a good idea again

• Several forms:
 Recursion
 Stepwise Refinement
 Modularization

• Lampson only talks about recursion
• Stepwise refinement is a useful technique to

contain complexity of systems
• Modules contain complexity
 Principle of “Separation of Concerns” (Edsger Dijkstra)

Divide and Conquer

• Use a highly optimized code path for normal case
• Just try to implement handling the worst case

correctly
• Sometimes optimizing normal case hurts worst

case performance!
 And sometimes good worst case performance is more

important than optimal normal case performance
• Example: normal case in TCP/IP highly optimized

Handle normal and worst case separately

• Lampson talks mostly about making systems fast
• Other, perhaps more subtle considerations

include
 Predictable performance
 Meeting service-level objectives
 Cheap to run in terms of resources

SPEED

• Partitioning may result in better performance
than sharing
 but not always..

• for example: a shared cache would result in better overall
utilization typically than a partitioned cache

• but a partitioned cache may give more predictable
performance to any particular user

 most low-level resources these days tend to be
shared…

• Prioritize safety over optimality

Split resources
Safety first

• No, this is not a PL course
• If you know something about the workload,

exploit it!
 For example, workload might exhibit locality,

periodicity, etc.
 Related to “normal case” handling

• Prefetching allows I/O and compute to overlap
• Examples: paging and scheduling algorithms

Static analysis
Dynamic translation

• Caching answers to expensive computations
trades storage for other resources (CPU,
network, etc.)
 What does “expensive” mean in this context?

• “Hints” are typically caches of potentially wrong
information
 Example: DNS uses this extensively to provide

scalability
 Should be easy to check if hint works, and correct for it

if not

Cache answers
Use hints

• Related idea: don’t optimize blindly
1. build the system “stupidly”
2. identify bottlenecks through profiling
3. eliminate bottlenecks
4. go back to Step 2 if necessary

• If the system is modular, such “adjustments” are
typically easy to make
 If not, difficult refactoring might be necessary
 Related: building series of prototypes

When in doubt, use brute force

• “Compute in background” essentially means to
do I/O and compute in parallel
 examples: paging, GC, …
 in this day and age, we do everything in parallel…

• Batching multiple small jobs into a larger one can
significantly improve throughput
 although often at the expense of latency
 example: TCP

• Avoid overload by admission control
 example: TCP

Compute in background
Use batch processing

Shed load

• We expect 24x7x365.25 reliability these days
• In spite of what Lampson says, it’s pretty hard…

Fault Tolerance

• Cheap: many storage devices optimal or
optimized for append-only

• Useful: after a crash, state can be restored by
replaying log
 helps if updates are “idempotent” or restartable
 example: ARIES “WAL” (Write-Ahead Log)

• Atomic (trans-)actions simplify reliable system
design
 group of low-level operations that either complete as

a unit or have no effect
• Isolation and Durability are also very useful

properties!

Log updates
Make actions atomic or restartable

• Lessons Learned
 Pose your problem in a clean way
 Next decompose into large-scale components
 Think about the common case that will determine

performance: the critical path or the bottleneck points
 Look for elegant ways to simultaneously offer structural

clarity and yet still offer fantastic performance
• This can guide you towards very high-impact

success

Concrete conclusions?

• Rank-order papers to present
• Read and write review:
 The UNIX time-sharing system, Dennis M. Ritchie and Ken

Thompson. Communications of the ACM Volume 17, Issue 7,
July 1974, pages 365 – 375

 https://dl.acm.org/doi/10.1145/357401.357402

 The structure of the "THE"-multiprogramming system, E.W.
Dijkstra. Communications of the ACM Volume 11, Issue 5, May
1968, pages 341—346

 https://dl.acm.org/doi/10.1145/363095.363143

• Need to be on campus, or use VPN to access some papers. Or, change
".acm.org/" to ".acm.org.proxy.library.cornell.edu/" in the URL

• Check website for updated schedule

Before Next Time

https://dl.acm.org/doi/10.1145/357401.357402
https://dl.acm.org/doi/10.1145/363095.363143

	Systems End-to-end argument and Design Hints
	Systems Research
	What is System Design: Science, Art, Puzzle?
	Something to do with “Abstraction”
	Also, “Layering” (layered modules)
	Any problem in computer science can be solved with another level of indirection
	Functionality vs Assurance
	End-to-End arguments in System Design –�Jerry H. Saltzer, David P. Reed, David D. Clark (MIT)
	End-to-End argument
	Example : File Transfer (A to B)
	Example : File Transfer (A to B)
	Possible failures
	Solution: make the network reliable?
	Solution: end-to-end retransmission?
	Is network-level reliability useful?
	TCP/IP
	Other end-to-end examples
	Is argument complete?
	“Hints for Computer System Design”�--- Butler Lampson, 1983
	Some Projects & Collaborators
	Some Projects & Collaborators (cont.)
	System Design Hints organized along two axes: Why and Where
	Slide Number 23
	FUNCTIONALITY
	Keep it Simple Stupid (KISS Principle)
	Do one thing at a time, and do it well�Don’t generalize�Get it right!
	Make it Fast�Leave it to the Client�Don’t Hide Power�Keep Secrets
	Use procedure arguments
	Keep basic interfaces stable�Keep a place to stand
	Plan to throw one away�Use a good idea again
	Divide and Conquer
	Handle normal and worst case separately
	SPEED
	Split resources�Safety first
	Static analysis�Dynamic translation
	Cache answers�Use hints
	When in doubt, use brute force
	Compute in background�Use batch processing�Shed load
	Fault Tolerance
	Log updates�Make actions atomic or restartable
	Concrete conclusions?
	Before Next Time

