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What is consensus?

 Assume a collection of processes that can propose  values. A consensus 
algorithm ensures that a single  one among the proposed values is 
chosen . . . We  won’t try to specify precise liveness requirements.

 The consensus problem involves an asynchronous  system of processes, 
some of which may be  unreliable. The problem is for the reliable 
processes  to agree on a binary value . . . every protocol for this  
problem has the possibility of nontermination . . .



What is consensus?

 Only a proposed value may be chosen.
 Only one, unique value may be chosen.
 All correct processes must eventually choose that  value.



Paxos

Leslie Lamport



Paxos

 The Part-Time Parliament (1998)
 Recent archaeological discoveries on the island  of Paxos reveal that the 

parliament functioned  despite the peripatetic propensity of its part-time 
legislators. The legislators maintained  consistent copies of the parliamentary 
record,  despite their frequent forays from the chamber  and the forgetfulness 
of their messengers. The  Paxon parliament’s protocol provides a new  way of 
implementing the state machine  approach to the design of distributed systems.



The Part-Time Parliament



Paxos: The Lost Manuscript

 Finally published in 1998 after it was put into use

 Published as a “lost manuscript” with notes from Keith Marzullo
 “This submission was recently discovered behind a filing cabinet in the TOCS editorial 

office. Despite its age, the editor-in-chief felt that it was worth publishing. Because the 
author is currently doing field work in the Greek isles and cannot be reached, I was asked 
to prepare it for publication.”

 “Paxos Made Simple” simplified the explanation…a bit too much
 Abstract: The Paxos algorithm, when presented in plain English, is very simple.



Assumptions about our model

 Processes can fail by crashing
 No indication of failure; simply stops responding to messages
 Failed processes cannot arbitrarily transition or send arbitrary messages

 Asynchronous, but reliable, network
Messages can be
 lost
 duplicated
 reordered
 held arbitrarily long
 If a msg is sent infinitely many time, it will be delivered infinitely many times.
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Any process might fail

 There must be multiple acceptors.



Only choose a single value

 A majority of acceptors must agree on the choice.



Property 1

 An acceptor must accept the first proposal it receives.



Wait—what?

 Majority-must-agree + Must-accept-first =  
Acceptors must be able to accept multiple proposals



Wait—what?

 Majority-must-agree + Must-accept-first =  
Acceptors must be able to accept multiple proposals
 Number all proposals uniquely to distinguish them



Property 2

 If a proposal with value v is chosen, then every  higher-numbered 
proposal that is chosen
has value v.



Property 2a

 If a proposal with value v is chosen, then every  higher-numbered 
proposal accepted by any acceptor
has value v.



Property 2b

 If a proposal with value v is chosen, then every  higher-numbered 
proposal issued by any proposer
has value v.



Property 2c

 For any v and n, if a proposal with value v and number n is issued, 
then there is a set S consisting of a majority of acceptors such that 
either
 no acceptor in S has accepted any proposal  numbered less than n, or
 v is the value of the highest-numbered proposal  among all proposals 

numbered less than n accepted by the acceptors in S.



Proposers
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Prepare requests

 Instead of predicting the future
 Proposer sends prepare n to acceptors
 Each acceptor replies with
 A promise to reject lower proposals in future
 If any, the highest accepted lower proposal



Accept request

 If a majority promise
 Proposer sends propose n, v

 If there were accepted proposals
 v must match the highest one  

(Otherwise, v can be arbitrary.)



Acceptors

Acceptors



Property 1a

 An acceptor can accept a proposal numbered n iff it has not 
responded to a prepare request having a number greater than n.



Responding to prepare requests

 An acceptors may respond to any prepare request
 To optimize, ignore requests lower than promised



Learners

LearnersBroadcast choices

Choose majority



Distinguished learner (optimization)



Progress

 P1 receives promises for n1

 P2 receives promises for n2 > n1

 P1 sends proposal numbered n1, rejected
 P1 receives promises for n1’ > n2

 P2 sends proposal numbered n2, rejected
 P1 receives promises for n2’ > n1’
 P1 sends proposal numbered n1’, rejected
 ad infinitum…



Paxos Made Moderately Complex

Robbert van Renesse and Deniz Altinbuken (Cornell University)
ACM Computing Surveys, 2015

“The Part-Time Parliament” was too confusing
“Paxos Made Simple” was overly simplified
Better to make it moderately complex!

Much easier to understand
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Paxos Structure

36Figure from James Mickens. ;login: logout. The Saddest Moment. May 2013



Paxos Structure
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Moderate Complexity: Notation

38Figure from van Renesse and Altinbuken 2015

Function as proposers and 
learners without persistent 

storage

Store data and 
propose to proposers



a. Proposer proposes a ballot b

Single-Decree Synod
Decides on one command
System is divided into proposers and acceptors
The protocol executes in phases:

a. If b' > b, update b and abort
Else wait for majority of acceptors
Request received ci with highest ballot number

1. Acceptori responds with (b', ci)

b. If b' has not changed, accept

Proposer
b = 0

Acceptori
b' = 0

b = b + 1
Send (p1a,b)

if (b' < b)
b' = b

Send (p1b,b',ci)if (b' > b)
b = b'
abort

if majority
c = b-max(ci)
Send (p2a,b,c)

if (b' == b)
accept (b',c)
Send (p2b,b',c)

A learner learns c if it receives the same (p2b, b',c) from a majority of 
acceptors 39



Optimizations: Distinguished Learner
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Optimizations: Distinguished Proposer
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What can go wrong?
 A bunch of preemption

 If two proposers keep preempting each other, no decision will be made

 Too many faults
 Liveness requirements

 majority of acceptors
 one proposer
 one learner

 Correctness requires one learner

42



Sequential separate runs
Slow

Parallel separate runs
Broken (no ordering)

One run with multiple slots
Multi-decree Synod!

Deciding on Multiple Commands
Run Synod protocol for multiple slots
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Synod

Synod
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Paxos with Multi-Decree Synod
 Like single-decree Synod with one key difference:

Every proposal contains a both a ballot and slot number

 Each slot is decided independently

 On preemption (if (b' > b) {b = b'; abort;}),
proposer aborts active proposals for all slots

44



Moderate Complexity: Leaders
Leader functionality is split into pieces

 Scouts – perform proposal function for a ballot number
 While a scout is outstanding, do nothing

 Commanders – perform commit requests
 If a majority of acceptors accept, the commander reports a decision

 Both can be preempted by a higher ballot number
 Causes all commanders and scouts to shut down and spawn a new scout

45



Moderate Complexity: Optimizations

 Distinguished Leader
 Provides both distinguished proposer and distinguished learner

 Garbage Collection
 Each acceptor has to store every previous decision
 Once f + 1 have all decisions up to slot s, no need to store s or earlier
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Paxos Questions?
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Backup
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What is consensus?

Consensus is the problem of getting a set of processors to agree on some 
value.
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What is consensus?
More formally, consensus is the problem of satisfying the following 

properties:
 Validity

 If all processes that propose a value propose v, then all correct deciding 
processes eventually decide v

 Agreement
 If a correct deciding process decides v, then all correct deciding processes 

eventually decide v
 Integrity

 Every correct deciding process decides at most one value, and if it decides 
v, then some process must have proposed v

 Termination
 E  t l i   t ll  l   d id d l
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