
DISTRIBUTED SYSTEMS: PAXOS

Hakim WeatherspoonCS6410

1

Slides borrowed liberally from past presentations from Robert Surton, Cecchetti, Burcu Canakci and Matt Burke

Timeline

Time, Clocks and Ordering
State Machine Replication Paxos Published

1978 1984 1989

Timeline

Time, Clocks and Ordering
State Machine Replication Paxos Published

1978 1984 1989

Paxos Published In
Journal

1998

Timeline

Time, Clocks and Ordering
State Machine Replication Paxos Published

1978 1984 1989

Paxos Published In
Journal

1998

Paxos Made Simple

2001

Timeline

Time, Clocks and Ordering
State Machine Replication Paxos Published

1978 1984 1989

Paxos Published In
Journal

1998

Paxos Made Simple

2001

2015

Paxos Made Moderately
Complex

What is consensus?

 Assume a collection of processes that can propose values. A consensus
algorithm ensures that a single one among the proposed values is
chosen . . . We won’t try to specify precise liveness requirements.

 The consensus problem involves an asynchronous system of processes,
some of which may be unreliable. The problem is for the reliable
processes to agree on a binary value . . . every protocol for this
problem has the possibility of nontermination . . .

What is consensus?

 Only a proposed value may be chosen.
 Only one, unique value may be chosen.
 All correct processes must eventually choose that value.

Paxos

Leslie Lamport

Paxos

 The Part-Time Parliament (1998)
 Recent archaeological discoveries on the island of Paxos reveal that the

parliament functioned despite the peripatetic propensity of its part-time
legislators. The legislators maintained consistent copies of the parliamentary
record, despite their frequent forays from the chamber and the forgetfulness
of their messengers. The Paxon parliament’s protocol provides a new way of
implementing the state machine approach to the design of distributed systems.

The Part-Time Parliament

Paxos: The Lost Manuscript

 Finally published in 1998 after it was put into use

 Published as a “lost manuscript” with notes from Keith Marzullo
 “This submission was recently discovered behind a filing cabinet in the TOCS editorial

office. Despite its age, the editor-in-chief felt that it was worth publishing. Because the
author is currently doing field work in the Greek isles and cannot be reached, I was asked
to prepare it for publication.”

 “Paxos Made Simple” simplified the explanation…a bit too much
 Abstract: The Paxos algorithm, when presented in plain English, is very simple.

Assumptions about our model

 Processes can fail by crashing
 No indication of failure; simply stops responding to messages
 Failed processes cannot arbitrarily transition or send arbitrary messages

 Asynchronous, but reliable, network
Messages can be
 lost
 duplicated
 reordered
 held arbitrarily long
 If a msg is sent infinitely many time, it will be delivered infinitely many times.

Processes

Processes
Proposers

Learners
Acceptors

Processes
Proposers

Learners
Acceptors

Any process might fail

 There must be multiple acceptors.

Only choose a single value

 A majority of acceptors must agree on the choice.

Property 1

 An acceptor must accept the first proposal it receives.

Wait—what?

 Majority-must-agree + Must-accept-first =
Acceptors must be able to accept multiple proposals

Wait—what?

 Majority-must-agree + Must-accept-first =
Acceptors must be able to accept multiple proposals
 Number all proposals uniquely to distinguish them

Property 2

 If a proposal with value v is chosen, then every higher-numbered
proposal that is chosen
has value v.

Property 2a

 If a proposal with value v is chosen, then every higher-numbered
proposal accepted by any acceptor
has value v.

Property 2b

 If a proposal with value v is chosen, then every higher-numbered
proposal issued by any proposer
has value v.

Property 2c

 For any v and n, if a proposal with value v and number n is issued,
then there is a set S consisting of a majority of acceptors such that
either
 no acceptor in S has accepted any proposal numbered less than n, or
 v is the value of the highest-numbered proposal among all proposals

numbered less than n accepted by the acceptors in S.

Proposers

Proposers
Proposers

Prepare requests

 Instead of predicting the future
 Proposer sends prepare n to acceptors
 Each acceptor replies with
 A promise to reject lower proposals in future
 If any, the highest accepted lower proposal

Accept request

 If a majority promise
 Proposer sends propose n, v

 If there were accepted proposals
 v must match the highest one

(Otherwise, v can be arbitrary.)

Acceptors

Acceptors

Property 1a

 An acceptor can accept a proposal numbered n iff it has not
responded to a prepare request having a number greater than n.

Responding to prepare requests

 An acceptors may respond to any prepare request
 To optimize, ignore requests lower than promised

Learners

LearnersBroadcast choices

Choose majority

Distinguished learner (optimization)

Progress

 P1 receives promises for n1

 P2 receives promises for n2 > n1

 P1 sends proposal numbered n1, rejected
 P1 receives promises for n1’ > n2

 P2 sends proposal numbered n2, rejected
 P1 receives promises for n2’ > n1’
 P1 sends proposal numbered n1’, rejected
 ad infinitum…

Paxos Made Moderately Complex

Robbert van Renesse and Deniz Altinbuken (Cornell University)
ACM Computing Surveys, 2015

“The Part-Time Parliament” was too confusing
“Paxos Made Simple” was overly simplified
Better to make it moderately complex!

Much easier to understand

35

Paxos Structure

36Figure from James Mickens. ;login: logout. The Saddest Moment. May 2013

Paxos Structure

37

Proposers

Acceptors

Learners

Moderate Complexity: Notation

38Figure from van Renesse and Altinbuken 2015

Function as proposers and
learners without persistent

storage

Store data and
propose to proposers

a. Proposer proposes a ballot b

Single-Decree Synod
Decides on one command
System is divided into proposers and acceptors
The protocol executes in phases:

a. If b' > b, update b and abort
Else wait for majority of acceptors
Request received ci with highest ballot number

1. Acceptori responds with (b', ci)

b. If b' has not changed, accept

Proposer
b = 0

Acceptori
b' = 0

b = b + 1
Send (p1a,b)

if (b' < b)
b' = b

Send (p1b,b',ci)if (b' > b)
b = b'
abort

if majority
c = b-max(ci)
Send (p2a,b,c)

if (b' == b)
accept (b',c)
Send (p2b,b',c)

A learner learns c if it receives the same (p2b, b',c) from a majority of
acceptors 39

Optimizations: Distinguished Learner

40

Proposers

Acceptors

Distinguished
Learner

Other
Learners

Optimizations: Distinguished Proposer

41

Other
Proposers

Acceptors

Distinguished
Proposer

Learners

What can go wrong?
 A bunch of preemption

 If two proposers keep preempting each other, no decision will be made

 Too many faults
 Liveness requirements

 majority of acceptors
 one proposer
 one learner

 Correctness requires one learner

42

Sequential separate runs
Slow

Parallel separate runs
Broken (no ordering)

One run with multiple slots
Multi-decree Synod!

Deciding on Multiple Commands
Run Synod protocol for multiple slots

43

Slot 1
c1

Slot 2
c2

Slot 3
c3

Synod

Synod

Syond

Multi-decree
Synod

Paxos with Multi-Decree Synod
 Like single-decree Synod with one key difference:

Every proposal contains a both a ballot and slot number

 Each slot is decided independently

 On preemption (if (b' > b) {b = b'; abort;}),
proposer aborts active proposals for all slots

44

Moderate Complexity: Leaders
Leader functionality is split into pieces

 Scouts – perform proposal function for a ballot number
 While a scout is outstanding, do nothing

 Commanders – perform commit requests
 If a majority of acceptors accept, the commander reports a decision

 Both can be preempted by a higher ballot number
 Causes all commanders and scouts to shut down and spawn a new scout

45

Moderate Complexity: Optimizations

 Distinguished Leader
 Provides both distinguished proposer and distinguished learner

 Garbage Collection
 Each acceptor has to store every previous decision
 Once f + 1 have all decisions up to slot s, no need to store s or earlier

46

Paxos Questions?

47

Backup

48

What is consensus?

Consensus is the problem of getting a set of processors to agree on some
value.

What is consensus?
More formally, consensus is the problem of satisfying the following

properties:
 Validity
 Agreement
 Integrity
 Termination

What is consensus?
More formally, consensus is the problem of satisfying the following

properties:
 Validity

 If all processes that propose a value propose v, then all correct deciding
processes eventually decide v

 Agreement
 Integrity
 Termination

What is consensus?
More formally, consensus is the problem of satisfying the following

properties:
 Validity

 If all processes that propose a value propose v, then all correct deciding
processes eventually decide v

 Agreement
 If a correct deciding process decides v, then all correct deciding processes

eventually decide v
 Integrity
 Termination

What is consensus?
More formally, consensus is the problem of satisfying the following

properties:
 Validity

 If all processes that propose a value propose v, then all correct deciding
processes eventually decide v

 Agreement
 If a correct deciding process decides v, then all correct deciding processes

eventually decide v
 Integrity

 Every correct deciding process decides at most one value, and if it decides
v, then some process must have proposed v

 Termination

What is consensus?
More formally, consensus is the problem of satisfying the following

properties:
 Validity

 If all processes that propose a value propose v, then all correct deciding
processes eventually decide v

 Agreement
 If a correct deciding process decides v, then all correct deciding processes

eventually decide v
 Integrity

 Every correct deciding process decides at most one value, and if it decides
v, then some process must have proposed v

 Termination
 E t l i t ll l d id d l

	Distributed systems: PAxos
	Timeline
	Timeline
	Timeline
	Timeline
	What is consensus?
	What is consensus?
	Paxos
	Paxos
	The Part-Time Parliament

	Paxos: The Lost Manuscript
	Assumptions about our model
	Processes
	Processes
	Processes
	Any process might fail
	Only choose a single value
	Property 1
	Wait—what?
	Wait—what?
	Property 2
	Property 2a
	Property 2b
	Property 2c
	Proposers
	Proposers
	Prepare requests
	Accept request
	Acceptors
	Property 1a
	Responding to prepare requests
	Learners
	Distinguished learner (optimization)
	Progress
	Paxos Made Moderately Complex
	Paxos Structure
	Paxos Structure
	Moderate Complexity: Notation
	Single-Decree Synod
	Optimizations: Distinguished Learner
	Optimizations: Distinguished Proposer
	What can go wrong?
	Deciding on Multiple Commands
	Paxos with Multi-Decree Synod
	Moderate Complexity: Leaders
	Moderate Complexity: Optimizations
	Paxos Questions?
	Backup
	What is consensus?
	What is consensus?
	What is consensus?
	What is consensus?
	What is consensus?
	What is consensus?

