
MapReduce
Kate Donahue

[Some slides taken from Yiqing Hua and Mengqi Xia’s presentation]

Overview

• MapReduce
• Timeline
• Core idea
• Examples
• Other design choices
• Demonstrated Results

• Comparison
• RDD paper
• Friends or Foes? paper

Timeline

• 1998: Google founded
• 2004: Google IPO
• 2004: MapReduce paper
• 2006: Hadoop released
• 2010: “MapReduce and Parallel DBMSs: Friends or Foes?” paper
• 2012: “Resilient Distributed Datasets” paper

Authors

• Jeff Dean
• Now head of Google AI

• Sanjay Ghemawat
• Now senior fellow in Google Systems group
• Went to Cornell but doesn’t donate enough

• Both joined Google early and were responsible for many core
contributions, even by the time this paper was written.

Engineering need

• Google’s core business: search
• Core search tool: PageRank
• PageRank calculates importance

of webpages based off of links to
other pages.

• “Join”: matrix with non-zero
entries if there is a link from one
webpage to another

Research needs (Discussion questions)

• Engineering need:
• Key question: How do we compute PageRank on the entire web downloaded

onto Google machines?

• Developer need:
• Parallelization: thinking about it is tricky
• Key question: How can we make it very easy for engineers to use many worker

machines to solve core Google problems?

MapReduce

• A very simple framework with multiple implementations
• Map

• Simple function taking in instances, calculating output associated with key
• Write intermediate data

• (Shuffle)
• Optimal step: rewrite instances so identical keys are located closer together

• Reduce
• Combine results associated with same key

• Example: Word counts across documents

map(String key, String value):
// key: document name
// value: document contents
for each word w in document:
EmitIntermediate (w, “1”);

map(“Hamlet”, “Tis now strook twelve…”)
{“tis”: “1”}
{“now”: “1”}
{“strook”: “1”}
…

Step 1: define the “mapper”

The shuffling step aggregates all results with the same key together into a single list.
(Provided by the framework)

{“tis”: “1”}
{“now”: “1”}
{“strook”: “1”}
{“the”: “1”}
{“twelve”: “1”}
{“romeo”: “1”}
{“the”: “1”}
…

{“tis”: [“1”,“1”,“1”...]}
{“now”: [“1”,“1”,“1”]}
{“strook”: [“1”,“1”]}
{“the”: [“1”,“1”,“1”...]}
{“twelve”: [“1”,“1”]}
{“romeo”: [“1”,“1”,“1”...]}
{“juliet”: [“1”,“1”,“1”...]}
…

Step 2: Shuffling

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
sum = 0
for each v in values:

result += ParseInt(v)
Emit (AsString(result))

reduce(“tis”, [“1”,“1”,“1”,“1”,“1”])
{“tis”: “5”}

reduce(“the”, [“1”,“1”,“1”,“1”,“1”,“1”,“1”...])
{“the”: “23590”}

reduce(“strook”, [“1”,“1”])
{“strook”: “2”}
...

Aggregates all the results together.

Step 3: Define the Reducer

MapReduce

• A very simple framework with multiple implementations
• Map

• Simple function taking in instances, calculating output associated with key
• Write intermediate data

• (Shuffle)
• Optimal step: rewrite instances so identical keys are located closer together

• Reduce
• Combine results associated with same key

• Example: Word counts across documents

Other examples

• Reverse Web-link graph: <target, list of sources>
• Map: Ingests a source and produces <target, source> pairs for each target
• Shuffle: Sort by targets
• Reduce: Concatenate to produce <target, list(source)> output.

Other examples

• Calculate PageRank
algorithm:

• Iterative process – repeated.
• Map: Ingests a source and

produce <target, calculated
PR> for each target.

• Shuffle: sort by targets
• Reduce: Combine PR from all

sources for a given target

Other examples

• Distributed sort:
• Map: Ingests record, produces <key, record> pair.
• Shuffle: Sort by key.
• Reduce: Identity function.

• Calculate mean by key:
• Map: Ingests <key, value> pair and produces same pair: is identity map.
• Shuffle: Sort by key.
• Reduce: Calculate mean for each key.

Implementation Environment
- Machines: dual-processor running Linux, 2-4 GB memory
- Commodity Networking Hardware: 100 MB/s or 1 GB/s, averaging less
- Cluster: hundreds or thousands of machines → Common Machine

Failure
- Storage: disks attached to machines
- File System: GFS
- Users submit jobs (consists of tasks) to scheduler, scheduler schedules to

machines within a cluster.

Design choices in paper implementation

• M: number of map tasks (should be much larger than the total
number of machines – heterogenous machines and tasks)

• R: number of reduce tasks (should be a small multiple of number of
machines – GFS restrictions)

• “Combiner” function does local reduction for commutative reduction
tasks (like addition).

• If a worker fails to respond, re-assign its task to another worker.

Stragglers experiment

• If a worker fails to respond, re-
assign its task to another
worker.

• Sort example:
• Two humps for shuffle around

the mapping and reduction
steps.

• Without backup steps, takes
44% longer to run.

Killing workers experiment

• Kill 200 workers while
process has begun.

• Tasks re-assigned, only
5% longer to complete.

Usage at Google

• Increasing usage at Google up to
publication of this paper

• Use cases:
• Machine learning
• Clustering for Google News
• Graph computations
• Extracting properties from web

pages

• Ease of use cited as helping
widespread utilization

MapReduce Falling Behind User Desires
MapReduce greatly simplified “big data” analysis on large, unreliable clusters
But as soon as it got popular, users wanted more:

1.More complex, multi-stage applications (for example, iterative machine
learning)

2.More interactive ad-hoc queries
Iterative algorithms and interactive data queries both require one thing that

MapReduce lacks:
Efficient data sharing primitives

Limitations

MapReduce shares data across jobs by writing to stable storage.
This is SLOW because of replication and disk I/O, but necessary for fault

tolerance in MapReduce’s framework
However, this isn’t necessary for fault tolerance in all frameworks –

foreshadowing to Spark later!

Research question

• Why did Google invent MapReduce rather than just using databases and
database processing algorithms?

“MapReduce and Parallel DBMSs: Friends or
Foes?”
• MapReduce (Hadoop

implementation)
• Extract-Transform-Load

functionality
• Easier to get started with, free.
• Allows unstructured data, more

flexible code structure than SQL.
• Potentially better for “quick and

dirty” one-off runs of data.

• Parallel database management
systems

• Database systems
• Much trickier to get up and

running.
• Structured data and SQL queries.
• Better when repeated queries are

likely or results need to be stored.

“It was not until we received expert support from one of the
vendors that we were able to get one particular DBMS to run
queries that completed in minutes, rather than hours or days.”

MapReduce vs. Parallel DBMS

• Replicated tasks from original
MapReduce paper, specifically
chosen so indexing or other
database techniques wouldn’t
be helpful

• Despite this, DBMS had much
higher performance!

Potential Explanations

• Mainly architectural decisions, not inherent limitations of
MapReduce.

• Repetitive record parsing: data stored in same form it was originally
stored in (requires repeatedly converting from text).

• Compression appears to help DBMS much more than MR.
• Scheduling: DBMS has pre-build query plan, so easier to optimize.
• In DBMS, data is sent directly from one worker to another, rather than

being written to disk.
• “The two technologies are complementary, and we expect MR-style

systems performing ETL to live directly upstream from DBMSs”

Is there a better way to do MapReduce?

• Research goal: Can we get the advantages of MapReduce over
databases without the slowdown?

Resilient Distributed Datasets (Spark)

• Keep intermediate results in memory. For fault-tolerance, keep
“lineage” of steps required to produce data. In case of a fault, it is
easier to reproduce data from versions still in memory: look at the
specific input lines needed to produce the output lines that were lost.

• Only coarse-grained operations (join, map, filter) rather than cell-level
manipulation. Easier to maintain a log of transformations, but
restricts actions you can take.

• No checkpointing (writing of intermediate steps) necessary.
• Users can ask for certain outputs to persist.

Iterative Operations

MapReduce Spark RDD

Interactive Operations

MapReduce Spark RDD

Performance: Time

Performance: Fault-resilience

When nodes fail, Spark can
recover quickly by
rebuilding only the lost
RDD partitions.

Limitations
1.RDDs are best suited for batch applications that apply the same

operation to all elements of a dataset. RDDs are not suitable for
applications that make asynchronous fine-grained updates to shared
state.

2.Spark loads a process into memory and keeps it for the sake of caching.
If the data is too big to fit entirely into the memory, then there could be
major performance degradations.

MapReduce vs Spark

Perspectives

• MapReduce, databases, Spark, all differ:
• In engineering needs for a particular application
• In human needs in a particular situation

• Selecting between them is likely a process of balancing these
objectives.

	MapReduce
	Overview
	Timeline
	Authors
	Engineering need
	Research needs (Discussion questions)
	MapReduce
	Step 1: define the “mapper”�
	Step 2: Shuffling
	Step 3: Define the Reducer
	MapReduce
	Other examples
	Other examples
	Other examples
	Implementation Environment

	Design choices in paper implementation
	Stragglers experiment
	Killing workers experiment
	Usage at Google
	MapReduce Falling Behind User Desires
	Limitations
	Research question
	“MapReduce and Parallel DBMSs: Friends or Foes?”
	MapReduce vs. Parallel DBMS
	Potential Explanations
	Is there a better way to do MapReduce?
	Resilient Distributed Datasets (Spark)
	Iterative Operations
	Interactive Operations
	Performance: Time
	Performance: Fault-resilience
	Limitations
	MapReduce vs Spark
	Perspectives

