
MULTIPROCESSORS AND
HETEROGENEOUS ARCHITECTURES

Hakim WeatherspoonCS6410

1

Slides borrowed liberally from past presentations from Deniz Altinbuken, Ana Smith, Jonathan Chang

Overview
 Systems for heterogeneous multiprocessor architectures
 Disco (1997)

 Smartly allocates shared-resources for virtual machines
 Acknowledges NUMA (non-uniform memory access) architecture
 Precursor to VMWare

 Barrelfish (2009)
 Uses replication to decouple resources for virtual machines via MPI
 Explores hardware neutrality via system discovery
 Takes advantage of inter-core communication

2

End of Moore’s Law?

Processor Organizations

Single Instruction,
Single Data Stream

(SISD)

Single Instruction,
Multiple Data
Stream (SIMD)

Multiple Instruction,
Single Data Stream

(MISD)

Multiple Instruction,
Multiple Data Stream

(MIMD)

Uniprocessor Vector
Processor

Array
Processor

Shared
Memory

Distributed
Memory

Symmetric
Multiprocessor

Non-uniform
Memory
Access

Clusters

Evolution of Architecture (Uniprocessor)
 Von Neumann Design (~1960)
 # of Die = 1
 # of Cores/Die = 1
 Sharing=None
 Caching=None
 Frequency Scaling = True
 Bottlenecks

 Multiprogramming
 Main memory access

6

Evolution of Architecture (Multiprocessor)
 Super computers (~1970)
 # of Die = K
 # of Cores/Die = 1
 Sharing = 1 Bus
 Caching = Level 1
 Frequency Scaling = True
 Bottlenecks:

 Sharing required
 One system bus
 Cache reloading

7

Evolution of Architecture (Multicore Processor)
 IBM’s Power 4 (~2000s)
 # of Die = 1
 # of Cores/Die = M
 Sharing = 1 Bus, L2 cache
 Caching = Level 1 & 2
 Frequency Scaling = False
 Bottlenecks:

 Shared bus & L2 caches
 Cache-coherence

8

Evolution of Architecture (NUMA)
 Non-uniform Memory Access
 # of Die = K
 # of Cores/Die = variable
 Sharing = Local bus, local Memory
 Caching: 2-4 levels
 Frequency Scaling = False
 Bottlenecks:

 Locality: closer = faster
 Processor diversity

9

Challenges for Multiprocessor Systems
 Stock OS’s (e.g. Unix) are not NUMA-aware

 Assume uniform memory access
 Requires major engineering effort to change this…

 Synchronization is hard!
 Even with NUMA architecture, sharing lots of data is expensive

10

Doesn’t some of this sound familiar?...
 What about virtual machine monitors (aka hypervisors)?
 VM monitors manage access to hardware

 Present more conventional hardware layout to guest OS’s
 Do VM monitors provide a satisfactory solution?

11

Doesn’t some of this sound familiar?...
 What about virtual machine monitors (aka hypervisors)?
 VM monitors manage access to hardware

 Present more conventional hardware layout to guest OS’s
 Do VM monitors provide a satisfactory solution?

 High overhead (both speed and memory)
 Communication is still an issue

12

Doesn’t some of this sound familiar?...
 What about virtual machine monitors (aka hypervisors)?
 VM monitors manage access to hardware

 Present more conventional hardware layout to guest OS’s
 Do VM monitors provide a satisfactory solution?

 High overhead (both speed and memory)
 Communication is still an issue

 Proposed solution: Disco (1997)

13

Multiprocessors, Multi-core, Many-core

 Goal: Taking advantage of the resources in parallel

 Scalability
• Ability to support large number of processors

 Flexibility
• Supporting different architectures

 Reliability and Fault Tolerance
• Providing Cache Coherence

 Performance
• Minimizing Contention, Memory Latencies, Sharing Costs

What are critical systems design considerations

Disco: About the Authors
 Edouard Bugnion

 Studied at Stanford
 Currently at École polytechnique fédérale de Lausanne (EPFL)
 Co-founder of VMware and Nuova Systems (now under Cisco)

 Scott Devine
 Co-founded VMWare, currently their principal engineer
 Not the biology researcher
 Cornell alum!

 Mendel Rosenblum
 Log-structured File System (LFS)
 Another co-founder of VMWare 15

Disco: Goals

 Develop a system that can scale to multiple processors…

 ...without requiring extensive modifications to existing OS’s

 Hide NUMA

 Minimize memory overhead

 Facilitate communication between OS’s

16

Disco: Achieving Scalability
 Additional layer of software that mediates resource access to, and manages

communication between, multiple OS’s running on separate processors

17Multiprocessor
Processor Processor Processor Processor...

Disco

OS OS OS OS...

Software

Hardware

Disco: Hiding NUMA
 Relocate frequently used pages closer to where they are used

18

Disco: Reducing Memory Overhead
 Suppose we had to copy shared data (e.g. kernel code) for every VM

 Lots of repeated data, and extra work to do the copies!
 Solution: copy-on-write mechanism

 Disco intercepts all disk reads
 For data already loaded into machine memory, Disco just assigns mapping

instead of copying

19

Disco: Facilitating Communication
 VM’s share files with each other over NFS
 What problems might arise from this?

20

Disco: Facilitating Communication
 VM’s share files with each other over NFS
 What problems might arise from this?

 Shared file appears in both client and server’s buffer!
 Solution: copy-on-write, again!

 Disco-managed network interface + global cache

21

Disco: Evaluation
 Evaluation goals:

 Does Disco achieve its stated goal of achieving scalability on multiprocessors?
 Does it provide effective reduction in memory overhead?
 Does it do all this without significantly impacting performance?

 Evaluation methods: benchmarks on (simulated) IRIX (commodity OS) and
SPLASHOS (custom-made specialized library OS)
 Needed some changes to IRIX source code to make it compatible with Disco
 Relocated IRIX kernel in memory, hand-patched hardware abstraction layer (HAL)
 Is this cheating?

22

Disco: Evaluation Benchmarks
 The following workloads were used for benchmarking:

23

Disco: Impact on Performance
 Methodology: run each of the 4 workloads on a uniprocessor system

with and without Disco, measure difference in running time

 What could account for the difference between workloads?
24

Disco: Measuring Memory Overheads
 Methodology: run the pmake workload on stock IRIX and on Disco with

varying number of VMs
 Measurement: memory footprint in virtual memory (V) & actual machine

memory (M)

25

Disco: Does It Scale?
 Methodology: run pmake on stock IRIX and on Disco with varying

number of VM’s and measure execution time
 Also compare radix sort performance on IRIX vs SPLASHOS

26

Disco: Takeaways
 Virtual Machine Monitors are a feasible tool to achieve scalability on

multiprocessor systems
 Corollary: scalability does not require major changes

 The disadvantages of virtual machine monitors are not intractable
 Before Disco, overhead of VMs and resource sharing were big problems

27

Disco: Questions

 Does Disco achieve its goal of not requiring major OS changes?

 How does Disco compare to microkernels? Advantages/disadvantages?

 What about to Xen / other virtual machine monitors?

28

10 Years Later...
 Multiprocessor → Multicore
 Multicore → Many-core
 Amdahl’s law limitations

29
Big.Little heterogeneous multi-processing

From Disco to Barrelfish

30

Shared Goals Disco (1997) Barrelfish (2009)

Better VM Hypervisor Make VMs scalable! Make VMs scalable!

Better communication VM to VM Core to Core

Reduced overhead Share redundant code Use MPI to reduce wait

Fast memory access Move memory closer Distribute multiple copies

Barrelfish: Backdrop
“Computer hardware is diversifying and changing faster than system

software”

 12 years later, still working with heterogeneous commodity systems
 Assertion: Sharing is bad; cloning is good.

31

About the Barrelfish Authors
 Andrew Baumann

 Currently at Microsoft Research
 Better resource sharing (COSH)

 Paul Barham
 Currently at Google Research
 Works on Tensorflow
 “Xen and the art of virtualization” co-author

 Pierre-Evariste Dagand
 Formal verification systems
 Domain specific languages

 Tim Harris
 Microsoft Research → Oracle Research → Amazon
 “Xen and the art of virtualization” co-author 32

About the Barrelfish Authors
 Rebecca Isaacs

 Microsoft Research → Google →Twitter

 Simon Peter
 Assistant Professor, UT Austin

 Timothy Roscoe
 Swiss Federal Institute of Technology in Zurich

 Adrian Schüpbach
 Oracle Labs

 Akhilesh Singhania
 Oracle

33

Barrelfish: Goals

 Design scalable memory management

 Design VM Hypervisor for multicore systems

 Handle heterogenous systems

34

Barrelfish: Goals → Implementation (Multikernel)

 Memory Management: State replication instead of sharing

 Multicore: Explicit inter-core communication

 Heterogeneity: Hardware Neutrality

35

Barrelfish: Implementation for Memory Management
 Monitors & CPU drivers

 User-level code performs virtual memory management (end-to-end)
 CPU driver checks only that operations are correct (end-to-end)
 Capability copying & retyping (abstraction)

 Shared address spaces
 Trade-off between replicated and shared hardware pages (Corey)
 OS allowed to select spatio-temporal scheduling policy (end-to-end)

36

Barrelfish: Implementation for Multicore
 Cache-coherence costly, so supplement it with direct communication
 Intercore instead of interprocess communication
 Local shared cache-line

37

Barrelfish: Implementation for Heterogeneity
 Monitors

 Single-core, user-space processes
 Runs the agreement protocol that synchronizes system state

 CPU-driver

 Authorization & process scheduling
 Heavily customized for hardware/processors

38

Barrelfish: Implementation for Heterogeneity
 Knowledge and policy engine

 System knowledge based used to map hardware to first-order logic
 Good for creating cache/topology aware networks

 Experiences
 CPU/monitor driver division → non-optimal performance, good

engineering
 Network stack insufficient

39

Barrelfish: Evaluation Goals

 Memory management operations

 Overhead of message-passing

 CPU-intensive operations

 I/O testing for async overhead

40

Barrelfish: Goals → Experiments

 Memory management: TLB shootdown

 Overhead: synchronous programs, polling & interrupts

 CPU: CPU-bound applications

 I/O: IP Loopback, Database, Web-server

41

Barrelfish: Evaluation for Memory Management
 Task: TLB shootdown
 Difficulty: Requires global coordination
 Result: NUMA-aware & plain multicast

win

 Question:
Is reliance on hardware knowledge
problematic given the overhead of
system discovery or hand-coding?

42

Barrelfish: Evaluation for Overhead
 Task: Two-phase commit, polling & interrupts
 Difficulty: Message-passing requires more polling and interrupts
 Result: Current hardware is good enough

 Question: TLB fills, cache pollution not included in costs. Fair?

 Question: How might these results change with hardware? And

application? 43

Barrelfish: Evaluation for Overhead
 Task: IP Loopback Tests
 Difficulty: Reading/writing sockets on local computer
 Results: Barrelfish moderately outperforms Linux

44

Barrelfish: Evaluation for CPU
 Task: Compute-bound (CPU heavy) workloads
 Difficulty: Large shared-address spaces, parallel code
 Result: Barrelfish not great, but comparable to Linux

45

 Question:
Consistency > raw
performance gains?

Barrelfish: Evaluation for I/O
 Task(s): Web-server and relational database setup
 Difficulty: I/O traditional bottleneck
 Approach: Message-passing/distributed systems
 Result: Twice as many requests per second vs. lighttpd on Linux

 Question: Does load pattern matter for comparison?

 Question: Sufficient comparison for SQLite DB test?

46

Barrelfish: Summary
 Authors opinions

 Building an operating from scratch is difficult
 Barrelfish performs well given its relative underdevelopment

 Still actively developed
 http://www.barrelfish.org/download.html
 Not quite VMWare though!

 Message-passing elegant but perhaps not more efficient
 Interesting use of system discovery
 Evaluations

 Very synthetic, no money-graph
 Peppered with microbenchmarks, needs better macro-evaluation
 TLB shootdown, I/O results better than compute-bound results 47

http://www.barrelfish.org/download.html

Barrelfish: Questions

 Is message-passing a viable alternative to a shared-data approach?

 What applications would this system be best for?

 Were the evaluations thorough and realistic enough?

48

Takeaways
 Efficient VM monitor software critical

 Rapidly changing computer architectures → the-floor-is-lava
 Commodity and personal computing have increasing numbers of cores and

processors
 Improving VM performance possible if...

 Resources are shared even more (Disco)
 Resources are replicated and synced (Barrelfish)

 Best of Disco
 Don’t hide power: recognition of ccNUMA advantages
 Get it right: Disco clearly beats out competitors

 Best of Barrelfish
 Reuse good ideas: distributed systems for many-core computers
 Abstraction: System discovery

49

Thank You!

50

References
Baumann, Andrew, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh

Singhania. "The multikernel: a new OS architecture for scalable multicore systems." In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pp. 29-44. ACM, 2009.

Borkar, Shekhar. "Thousand core chips: a technology perspective." In Proceedings of the 44th annual Design Automation Conference, pp. 746-749.
ACM, 2007.

Boyd-Wickizer, Silas, Haibo Chen, Rong Chen, Yandong Mao, M. Frans Kaashoek, Robert Morris, Aleksey Pesterev et al. "Corey: An Operating System
for Many Cores." In OSDI, vol. 8, pp. 43-57. 2008.

Bugnion, Edouard, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. "Disco: Running commodity operating systems on scalable multiprocessors."
ACM Transactions on Computer Systems (TOCS) 15, no. 4 (1997): 412-447.

51

Perspective

 Virtualization: creating a illusion of something
 Virtualization is a principle approach in system design

 OS is virtualizing CPU, memory, I/O …
 VMM is virtualizing the whole architecture
 What else? What next?

 Project: next step is the Survey Paper due next Friday

 Read and write a review:
 Required: Shielding Applications from an Untrusted Cloud with Haven. Andrew

Baumann and Marcus Peinado and Galen Hunt. In the 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). Broomfield, CO, October
2014, pp. 267—283.

 Optional: Logical Attestation: An Authorization Architecture For Trustworthy
Computing. Emin Gun Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin
Walsh, Dan Williams, and Fred B. Schneider. In Proceedings of the Symposium on
Operating Systems Principles (SOSP), Cascais, Portugal, October 2011.

Next Time

	Multiprocessors and Heterogeneous architectures
	Overview
	End of Moore’s Law?
	Processor Organizations
	Evolution of Architecture (Uniprocessor)
	Evolution of Architecture (Multiprocessor)
	Evolution of Architecture (Multicore Processor)
	Evolution of Architecture (NUMA)
	Challenges for Multiprocessor Systems
	Doesn’t some of this sound familiar?...
	Doesn’t some of this sound familiar?...
	Doesn’t some of this sound familiar?...
	Multiprocessors, Multi-core, Many-core
	Disco: About the Authors
	Disco: Goals
	Disco: Achieving Scalability
	Disco: Hiding NUMA
	Disco: Reducing Memory Overhead
	Disco: Facilitating Communication
	Disco: Facilitating Communication
	Disco: Evaluation
	Disco: Evaluation Benchmarks
	Disco: Impact on Performance
	Disco: Measuring Memory Overheads
	Disco: Does It Scale?
	Disco: Takeaways
	Disco: Questions
	10 Years Later...
	From Disco to Barrelfish
	Barrelfish: Backdrop
	About the Barrelfish Authors
	About the Barrelfish Authors
	Barrelfish: Goals
	Barrelfish: Goals → Implementation (Multikernel)
	Barrelfish: Implementation for Memory Management
	Barrelfish: Implementation for Multicore
	Barrelfish: Implementation for Heterogeneity
	Barrelfish: Implementation for Heterogeneity
	Barrelfish: Evaluation Goals
	Barrelfish: Goals → Experiments
	Barrelfish: Evaluation for Memory Management
	Barrelfish: Evaluation for Overhead
	Barrelfish: Evaluation for Overhead
	Barrelfish: Evaluation for CPU
	Barrelfish: Evaluation for I/O
	Barrelfish: Summary
	Barrelfish: Questions
	Takeaways
	Thank You!
	References
	Perspective
	Next Time

