
CONCURRENCY, THREADS, AND EVENTS
Hakim WeatherspoonCS6410

1



 Hugh C. Lauer
 Adjunct Prof., Worcester Polytechnic Institute
 Xerox, Apollo Computer, Mitsubishi Electronic Research Lab, etc.
 Founded a number of businesses:

Real-Time Visualization unit of 
Mitsubishi Electric Research Labs (MERL)

 Roger M. Needham
 Prof., Cambridge University
 Microsoft Research, Cambridge Lab
 Kerberose, Needham-Schroeder security protocol, and key exchange 

systems

On the Duality of Operating System Structure



 Are they really the same thing?
 Lauer and Needham show

 1) two models are duals
Mapping exists from one model to other

 2) dual programs are logically identical
 Textually similar

 3) dual programs have identical performance
Measured in exec time, compute overhead, and queue/wait times

Message vs Procedure oriented system
(i.e. Events vs Threads)

Presenter
Presentation Notes
“UNIX is basically a simple operating system, but you have to be a genius to understand the simplicity.” – Dennis Ritchie




 Small, static # of process
 Explicit messaging
 Limited data sharing in memory
 Identification of address space or context with processes

Message-oriented system (Event)



 Characteristics
 Queuing for congested resource
 Data structure passed by reference 

(no concurrent access)
 Peripheral devices treated as processes
 Priority of process statically determined
 No global naming scheme is useful

Message-oriented system



 Calls: 
 SendMessage, AwaitReply
 SendReply
 WaitForMessage

 Characteristics
 Synchronization via message queues
 No sharing of data structures/address space
 Number of processes static

Message-oriented system

Presenter
Presentation Notes
“UNIX is basically a simple operating system, but you have to be a genius to understand the simplicity.” – Dennis Ritchie




 Canonical model
 begin

Do forever
WaitForMessages
case port 

port 1: …;
port 2: …; SendReply; …;

end case
end loop

end

Message-oriented system



 Large # of small processes
 Rapidly changing # of processes
 Communication using direct sharing and interlocking of data
 Identification of context of execution with function being executed

Procedure-Oriented System (Thread)



 Characteristics
 Synchronization and congestion control associates with waiting for locks
 Data is shared directly and lock lasts for short period of time
 Control of peripheral devices are in form of manipulating locks
 Priority is dynamically determined by the execution context
 Global naming and context is important

Process-oriented system



 Calls: 
 Fork, Join (process)
 Wait, Signal (condition variables)

 Characteristics
 Synchronization via locks/monitors
 Share global address space/data structures
 Process (thread) creation very dynamic and low-overhead

Process-oriented system

Presenter
Presentation Notes
“UNIX is basically a simple operating system, but you have to be a genius to understand the simplicity.” – Dennis Ritchie




 Canonical model
 Monitor

-- global data and state info for the process
proc1: ENTRY procedure
proc2: ENTRY procedure returns

begin
If resourceExhausted then WAIT; …;
RETURN result; …;

end
proc L: ENTRY procedure

begin
…; SIGNAL; …

end;
endloop;
initialize;

end

Process-oriented system



Dual Mapping

Event Thread

Processes: CreateProcess Monitors: NEW/START

Message channel External procedure id

Message port Entry procedure id

Send msg (immediate); AwaitReply Simple procedure call

Send msg (delayed); AwaitReply FORK; … JOIN

Send reply Return from procedure

Main loop of std resource manager, wait 
for message stmt, case stmt

Monitor lock, ENTRY attribute

Arms of case statement ENTRY proc declaration

Selective waiting Condition vars, WAIT, SIGNAL

Presenter
Presentation Notes
Can map one model to the other




 Performance characteristics
 Same execution time
 Same computational overhead
 Same queuing and waiting times

 Do you believe they are the same?
 What is the controversy?

Preservation of Performance

Presenter
Presentation Notes
“UNIX is basically a simple operating system, but you have to be a genius to understand the simplicity.” – Dennis Ritchie




 20 to 30 years later, still controversy!

 Analyzes threads vs event-based systems, finds problems with both
 Suggests trade-off: stage-driven architecture
 Evaluated for two applications

 Easy to program and performs well

SEDA: An Architecture for Well-Conditioned, 
Scalable Internet Services (Welsh, 2001)



 Matt Welsh
 Cornell undergraduate Alum (Worked on U-Net)
 PhD from Berkeley (Worked on Ninja clustering)
 Prof. at Harvard (Worked on sensor networks)
 Currently at Google

 David Culler
 Faculty at UC Berkeley

 Eric Brewer
 Faculty at UC Berkeley (currently on leave at Google)

SEDA: An Architecture for Well-Conditioned, 
Scalable Internet Services (Welsh, 2001)



 A traditional “process” is an address space and a thread of control.
 Now add multiple thread of controls

 Share address space
 Individual program counters and stacks

 Same as multiple processes sharing an address space.

What is a thread?



 To switch from thread T1 to T2:
 Thread T1 saves its registers (including pc) on its stack
 Scheduler remembers T1’s stack pointer
 Scheduler restores T2’ stack pointer
 T2 restores its registers
 T2 resumes

Thread Switching



 Maintains the stack pointer of each thread
 Decides what thread to run next

 E.g., based on priority or resource usage
 Decides when to pre-empt a running thread

 E.g., based on a timer
 Needs to deal with multiple cores

 Didn’t use to be the case
 “fork” creates a new thread

Thread Scheduler



 Semaphores
 P(S): block if semaphore is “taken”
 V(S): release semaphore

 Monitors:
 Only one thread active in a module at a time
 Threads can block waiting for some condition using the WAIT primitive
 Threads need to signal using NOTIFY or BROADCAST

Synchronization Primitives



 To exploit CPU parallelism
 Run two threads at once in the same program

 To exploit I/O parallelism
 Run I/O while computing, or do multiple I/O
 I/O may be “remote procedure call”

 For program structuring
 E.g., timers

Uses of threads



 Priority Inversion
 High priority thread waits for low priority thread
 Solution: temporarily push priority up (rejected??)

 Deadlock
 X waits for Y, Y waits for X

 Incorrect Synchronization
 Forgetting to release a lock

 Failed “fork”
 Tuning

 E.g. timer values in different environment

Common Problems



 An object queued for some module
 Operations:

 create_event_queue(handler)  EQ
 enqueue_event(EQ, event-object)
 Invokes, eventually, handler(event-object)

 Handler is not allowed to block
 Blocking could cause entire system to block
 But page faults, garbage collection, …

What is an Event?



(Also common in telecommunications industry, where it’s called 
“workflow programming”)

Example Event System



 Decides which event queue to handle next.
 Based on priority, CPU usage, etc.

 Never pre-empts event handlers!
 No need for stack / event handler

 May need to deal with multiple CPUs

Event Scheduler



 Handlers cannot block  no synchronization
 Handlers should not share memory

 At least not in parallel

 All communication through events

Synchronization?



 CPU parallelism
 Different handlers on different CPUs

 I/O concurrency
 Completion of I/O signaled by event
 Other activities can happen in parallel

 Program structuring
 Not so great…
 But can use multiple programming languages!

Uses of Events



 Priority inversion, deadlock, etc. much the same with events
 Stack ripping

Common Problems



Threaded Server Throughput



Event-driven Server Throughput



 Events-based systems use fewer resources
 Better performance (particularly scalability)

 Event-based systems harder to program
 Have to avoid blocking at all cost
 Block-structured programming doesn’t work
 How to do exception handling?

 In both cases, tuning is difficult

Threads vs. Events



 Mixture of models of threads and events
 Events, queues, and “pools of event handling threads”.
 Pools can be dynamically adjusted as need arises.

SEDA



SEDA Stage



 Ease of programming of threads
 Or even better

 Performance of events
 Or even better

 Did we achieve Lauer and Needham’s vision with SEDA?

Best of both worlds



 Read and write review:

 MP1 – due next Friday
 Let us know how you are doing; if need help

 Presentations
 Sign up to present

 Project Proposal due tomorrow
 Also, talk to faculty and email and talk to me

 Check website for updated schedule

Next Time

Presenter
Presentation Notes
Lab 0 – graded




 Read and write review:
 Required: Mach: A new kernel foundation for UNIX development, Mike 

Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, 
Avadis Tevanian, and Michael Young. Proceedings of the USENIX Summer 
Conference, Atlanta, GA, 1986, pages 93—112.

 Optional: The Performance of µ-Kernel-based Systems, Hermann Härtig, 
Michael Hohmuth, Jochen Liedtke, Jean Wolter, and Sebastian Schönberg. 
16th ACM Symposium on Operating Systems Principles (SOSP), Oct 1997, 
pages 66—77.

Next Time


	Concurrency, threads, and events
	On the Duality of Operating System Structure
	Message vs Procedure oriented system�(i.e. Events vs Threads)
	Message-oriented system (Event)
	Message-oriented system
	Message-oriented system
	Message-oriented system
	Procedure-Oriented System (Thread)
	Process-oriented system
	Process-oriented system
	Process-oriented system
	Dual Mapping
	Preservation of Performance
	SEDA: An Architecture for Well-Conditioned, Scalable Internet Services (Welsh, 2001)
	SEDA: An Architecture for Well-Conditioned, Scalable Internet Services (Welsh, 2001)
	What is a thread?
	Thread Switching
	Thread Scheduler
	Synchronization Primitives
	Uses of threads
	Common Problems
	What is an Event?
	Example Event System
	Event Scheduler
	Synchronization?
	Uses of Events
	Common Problems
	Threaded Server Throughput
	Event-driven Server Throughput
	Threads vs. Events
	SEDA
	SEDA Stage
	Best of both worlds
	Next Time
	Next Time

