
Software-Defined
Networking

Paul Grubbs

Portions of this talk taken from:
https://www.cs.rutgers.edu/~badri/552dir/papers/intro/nick09.pdf

http://dl.acm.org/citation.cfm?id=2602219
http://frenetic-lang.org/publications/frenetic-presto10-slides.pdf

http://frenetic-lang.org/publications/frenetic-icfp11-slides.pdf
Mohamed Ismail’s talk from 6410 fall ‘13

https://www.cs.rutgers.edu/~badri/552dir/papers/intro/nick09.pdf
https://www.cs.rutgers.edu/~badri/552dir/papers/intro/nick09.pdf
http://dl.acm.org/citation.cfm?id=2602219
http://dl.acm.org/citation.cfm?id=2602219
http://frenetic-lang.org/publications/frenetic-presto10-slides.pdf
http://frenetic-lang.org/publications/frenetic-presto10-slides.pdf
http://frenetic-lang.org/publications/frenetic-icfp11-slides.pdf
http://frenetic-lang.org/publications/frenetic-icfp11-slides.pdf

What papers will we be discussing?

OpenFlow: Enabling Innovation in Campus Networks
Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry

Peterson, Jennifer Rexford, Scott Shenker, Jonathan Turner

Frenetic: A High-Level Language for OpenFlow Networks
Nate Foster, Rob Harrison, Matthew L. Meola, Michael J. Freedman, Jennifer

Rexford, and David Walker.

Obligatory review of
OSI model

Network devices

switch router

● Layer 2 (“data link”)
forwarding

● Different machines on
the same LAN
communicate via a
switch

● Uses MAC addresses

● Layer 3 (“network”)
routing

● Connects LANs
together to form a
WAN

● Uses IP addresses

The joke’s on us: “switch”
and “router” are used
almost interchangeably!

Control Plane
● Which packets go where?
● Routing (flow) tables

Data Plane

● Get packets to the right place
● Uses flow table rules defined by control plane to route packets

Conventional networking

● Code+administration+hardware fused together in networking
● Control plane + data plane on same device

Networking researchers:
● Build new protocol
● Test at small scales
● Wait a decade for IETF

standardization
● Deploy

Industry networking:
● Cisco hardware
● Cisco operating system
● Works best with other Cisco

hardware.
● To change something, need

somebody certified with Cisco
to use the Cisco UI.

● How to scale to increase in
traffic? Buy more Cisco! Hire
more CCNAs!

What is software-defined networking (SDN)?
● Abstracts control from routing functionality
● Programmability of the control plane

○ Provides abstractions for device functions

History of SDN
● Active networking (mid 90s to early 00s)

○ Give programming interface that exposes network resources on individual devices
○ Ability to apply more fine-grained controls to specific packet streams
○ “[A]nathema to many in the internet community” who valued simplicity

● Control and data plane separation (early 00s to late 00s)
○ Standardized interfaces between the two

■ ForCES (Forwarding and Control Element Separation) IETF standard
○ Centralize management of control plane across different devices

■ Path Computation Element IETF standard
○ Challenge: distributed state management

● Around 2008, along comes….

OpenFlow
Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, Jonathan Turner

● SIGCOMM CCR 2008
● Open Networking foundation manages OpenFlow protocol
● OpenFlow protocol supported by most major router vendors,

including Cisco, IBM, Juniper, Brocade, and many others

From
Mohamed’s
slides

Motivation
● Networking researchers need to do experiments

○ Small-scale experiments not accurate assessment of performance in real settings

● Explicitly changing routing tables in every router is very complex
○ Each vendor has their own language, hardware, etc.

● Why don’t we just ask the vendors to provide an open, standard platform for
research?

○ Vendors jealously guard internal functions of router
○ No standard platform for experiments

Motivating questions
● “How will researchers control a portion of their local network in a way that

does not disrupt others who depend on it?”
● “[W]hat functionality is needed in network switches to enable experiments?”

What is a flow?

● packets that have the same
src and destination

○ (e.g. same src IP address
and port, dest IP address
and port, and protocol)

● “Paul’s traffic”
● “Traffic from Stanford”
● “HTTP traffic”

● Route flow
● Isolate flow
● Delete flow
● Compute statistics on flow

What do we want to do
with a flow?

How do we implement a flow?

Flows

Implementing a flow?
● Use common functionality of switch/router flow tables
● OpenFlow is an open protocol to program the flow table

○ Crucially, does not require knowledge of inner workings of device
○ Vendor-friendly

● Three main parts:
○ Flow table
○ Secure channel to controller
○ OpenFlow protocol (standard connection between controller and device)

The controller: it controls things
● Communicate with individual devices using OpenFlow

○ Statistics queries (e.g. “How many bytes from www.google.com?”)

● Devices ask controller for advice on previously-unseen packets
○ Controller can choose to install a new entry in the flow table in response to events

OpenFlow vs. IX/Arrakis?
● IX and Arrakis focus on making server networking fast and scalable for

applications which need very low latency (e.g. object caches)
○ Modify existing kernels to move network stack to user level
○ Primarily general-purpose hardware

● OpenFlow focuses on layer below application
○ Vendor-specific hardware, little/no internal details
○ Don’t modify software or hardware
○ Instead expose standard way to program common behaviors in different systems

● In common: abstract “control plane” from “data plane” (kind of)
○ Both “virtualize” underlying network device

Two ways to use OpenFlow

Dedicated OpenFlow switches OpenFlow-enabled switches or

Dedicated OpenFlow switches
● “Dumb” datapath element that implements OpenFlow
● Three basic actions it must perform:

○ Forward packets in flow to port(s)
○ Encapsulate and forward packets to controller
○ Deny or drop packets in flow

Dedicated OpenFlow switches

OpenFlow-enabled switches and routers
● Vendors implement OpenFlow API on existing devices
● Requirement: Isolate research traffic from normal flows

○ Either add a fourth action to tell device to send packet through normal flow, or
○ Define separate VLANs

OpenFlow-enabled switches and routers

Programming OpenFlow: NOX
● NOX: Towards an operating system for networks.

○ Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick McKeown,
Scott Shenker

● OpenFlow is like a device driver, NOX is like an operating system. (More on that in a bit.)

Thoughts/Questions?
● They didn’t really evaluate OpenFlow at all. Do you think this hurt their

“pitch”?
● Do you believe their claim that getting vendors to cooperate is too difficult?
● Is putting the controller in the routing path too slow? Are there other ways to

do it?
● What did you like or dislike about this paper?

Frenetic: A High-level Language for OpenFlow Networks

Nate Foster, Rob Harrison, Matthew L. Meola, Michael J.
Freedman, Jennifer Rexford, David Walker

MA, Princeton
Stroz Friedberg LLC

From
Mohamed’s
slides

Frenetic deals with this part

Programming OpenFlow/NOX is hard.
● Needs low-level understanding of routers and switches
● Changes to flow tables do not compose (!)
● Programmers need to reason about asynchronous behavior

NOX: An OpenFlow platform
● Platform for programming OpenFlow
● Paper published to SIGCOMM CCR alongside OpenFlow
● C++ API on standard Linux

“NOX: Towards an Operating System for Networks”
Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín

Casado, Nick McKeown, Scott Shenker

Example NOX program

?!?!?

?!?!?

Monitor rule is more specific
than repeater rule - must come
first!!!!

FreNETic (get it?)
● Built on top of NOX/OpenFlow controller
● High-level language using functional reactive programming paradigm
● Implements common features needed for flows
● Compositionality is guaranteed by language and runtime
● Asynchronous behavior is abstracted from programmer, handled by runtime

Core abstraction: streams

Performance compared to NOX

Thoughts/Questions?
● Is a custom language really easier than NOX’s approach?

○ Does it lead to fewer bugs and better programs overall?

● With Frenetic and NetKAT, the evolution of programmable
networks looks pretty familiar

○ Evolving pretty much how regular computers and languages did
(hardware->OSs->applications)

○ Can this give us any insight into the next few years of research in this
space?

■ What are the major pitfalls to avoid?
○ What about the future of commercial programmable networks?

● What did you like or dislike about this paper?

Happy Thanksgiving!!!!

