
CS 630 Lecture 1: 01/26/2006

Lecturer: Lillian Lee Scribes: Asif-ul Haque, Benyah Shaparenko

This lecture focuses on the following topics

• Information retrieval fundamentals

• Vector Space Model (VSM)

• Deriving term weights in VSM

1 Information retrieval fundamentals

1.1 “Classic” retrieval setting

In the “classic” information retrieval setting, there is a query q which is an the expression of user’s
needs. There is also a “corpus” (body) of documents

C = {d(1), d(2), . . . , d(n)}

The goal is to rank (some of) the documents in C by relevance to [the user’s need as indicated by] q.

1.2 Quality measures

So we need some quality measures as well to perform evaluation. Given a query q, suppose a system
outputs the set O of documents, and let the set of documents that are relevant to the query q be R.
There are two well known measures.

• Precision answers what proportion of the output documents is relevant to the query. Mathe-
matically, precision is computed by

|O ∩R|
|O|

• Recall answers what proportion of the relevant documents was obtained by the system. Math-
ematically,

|O ∩R|
|R|

1

In modern systems and document collections, there are thousands of relevant documents for a
query. So |R| can, conservatively, range from 1k to 10k while the number of output documents
that are reviewed is only 10 − 20. Thus the value of recall is really small. For this reason recall
not appropriate. The notion of precision can be changed somewhat as well to get a “high accuracy
measure.” precision @ 10, for example, asks how many of the top 10 output documents are relevant
to the query.

1.3 Measuring precision

How do we know which documents are relevant to a given query? We can do it in 2 ways.

• We can get a lot of data from the “Text REtrieval Conference” (TREC) database or simi-
larly, relevance-annotated collections, which we can use as “evaluation corpora” to know the
relevance.

• We can perform relevance judgments in our system.

2 Vector Space Model

The goal of the system is to get documents whose content is similar to that expressed by q. So we
have two issues here.

1. How to represent the content of a document

2. How to compute the similarity

The basis for modern systems is the Vector Space Model (VSM). Gerry Salton of the CS department
here was the pioneer of this empirical (“ad-hoc”) approach compared to model-driven approaches.

2.1 Representation

Let V be the vocabulary of content-bearing terms.

V = {v(1), v(2), . . . , v(m)}

2

A term can have multiple words; for example, in “data base,” the two words in the phrase hold some
meaning collectively. A term can also be a sequence of digits like “34539753671” to express some
meaning like phone number, ISBN number, etc. For every document d ∈ C and for every v(j) ∈ V we
compute a weight for how representative v(j) is of d’s context. So for every document d we get a doc-
ument vector

−→
d = (d1, d2, . . . , dm)T . For example if v(1)=“dogs” and v(2)=“cats,” some document

−→
d (14) = (8, 1.2)T means that the document’s relevance measure with “dogs” is 8 and with “cats” is
1.2. Similarly the vectors

−→
d (20) = (7, 2)T and

−→
d (21) = (1, 6)T are representations of two other doc-

uments. So each document is a vector in <m, and we can measure the “similarity” by the closeness
of the vectors in space. Note that d(20) and d(14) are clearly closer to each other than they are to d(21).

2.2 Retrieval

There are many different possibilities for score functions for performing ranked retrieval, but they
all tend to measure the “match” between ~d and ~q. The similarity here can be measured by the inner
product

~d · ~q =
m∑

j=1

djqj = ‖~d‖2‖~q‖2 cos(∠(~d, ~q))

which is true if ‖~d‖2, ‖~q‖2 > 0 and where dj represents whether term j is good for document d and
qj represents whether term j is good for the query. A “0” value for the norm could be because of an
empty query or document, but could also result from an out-of-vocabulary document.

Since ‖~q‖2 is identical for all documents, the ‖~q‖2 term is irrelevant with respect to ranking. So

3

we have that
Match Score rank= ‖~d‖2 cos(∠(~d, ~q))

Intuitively, the cos term asks whether ~q and ~d point in the same direction. The ‖~d‖2 term
captures:

1. whether the document has lots of words

2. very representative terms, i.e. “dogmaticity” (which is probably not a word)

This setup is the retrieval paradigm that we will use. But, where are all the di terms in these
vectors coming from?

3 Term-weighting question

Recall several definitions. The notation dj is how much v(j) represents d’s content. Ideally, somebody
would read the documents and create weights for the terms, but if you are a computer and cannot
read, then what?

The goal is vague, so there isn’t just one right way to come up with term weights. However,
by many years of experience, there is a consensus about what should be included when doing term
weighting. In fact, there are three important factors for the weighting function.

3.1 Representativeness is corpus-dependent.

Some terms are more important than other terms, and their representativeness depends on the
context of those terms. For example, given two terms, “the” and “computer,” the term “computer”
seems to be more important, but if all the documents in the corpus at hand have the term “computer,”
then when comparing documents, it has no use whatsoever.

3.1.1 An example

Let q = “computer modeling of neural processes.” Let d(1) = “computer chess” and d(2) = “sim-
ulating neural firing.” Since q shares one term in common with each d(1) and d(2), then d(1) and
d(2) would be considered equally relevant if we only considered term overlap. However, this doesn’t
make sense. Although there are the same number of matches of terms, the documents should be
ranked differently. In fact, d(2) is quite relevant even though it happens to have used different terms,
namely, “simulating” for “modeling” and “firing” for “processes.” So, we need to factor the rarity
of the term v(j) into the weights across the corpus.

Note that if d(1) were the only doc in the corpus that mentioned computers, then it might be
possible that d(1) is highly relevant, in that the user might be specifically querying a non-computer-
science collection looking for an application of computers.

3.1.2 IDF

One way of measuring the rarity of a term is by dividing by the number of documents containing v(j)

to get something called “inverse document frequency”. This will henceforth be called simply idf. It

4

is based on the idea of dividing by some quantity related to the number of documents that contain
v(j) For example,

idf could be
docs in C

docs containing v(j)

If the term occurs in all the documents, idf = 1. If the term occurs in only one document, then
idf = |C|. Alternatively, we could take the log of all the idf scores, which serves the purpose of
compressing the dynamic range of the idf function.

3.2 Representation of a particular document

The term frequency of v(j) in d is also important. The intuition is that the more often a term
appears, the more “content-full” that term is. Ways of incorporating term frequency include using
#(v(j) in d), log #(v(j) in d), among others.

Is term frequency always the right thing to do? In the case of “web spam,” certain web sites
have lots of hidden text written in the same color as the background, so that when you view the
page, it looks normal, but all the words are repeated, say, 200 times. When performing retrieval,
this document gets ranked higher because of the inflated term frequency score.∑

qjdj �
∑

qj(200dj)

if we assume that not all the dj ’s are zero.

3.3 Normalization

We can’t just use only term frequency, but must perform some kind of normalization on the term
weights. Next time, we will begin with cosine normalization, then talk about pivoted length normal-
ization.

4 Finger Exercise: What are terms?

In class, we briefly discussed what should be terms. In particular, it is generally not safe to assume
that each word corresponds to a term. This finger exercise illustrates how term selection can affect
retrieval results.

Consider the following problem. There are two documents in the corpus:
d(1) = ithaca ’s weather is rainy
d(2) = a student studying in the department of computer science at cornell in ithaca

Assume that we have a query and we want to retrieve the single document that best matches the
query. The query is the following:

q = the weather in ithaca

1. If we assume that each word is one term, what is the set of terms? Using the TFIDF weighting
(without logs) discussed in class with cosine normalization, which document will be retrieved?

2. Assume that we have the following list of stopwords: the, in, is, a, of, at. (Stopwords are words
we choose to omit from the vocabulary as being non-content-bearing.) In this case, what is the
set of terms? Using the TFIDF weighting discussed in class with cosine normalization, which
document will be retrieved?

5

3. What about stemming? (Stemming is one way of consolidating words that have similar content
and form. For example, the words “stem,” “stemmed,” “stemming,” “stems,” “stemmer,” etc.
could all be condensed into one word, “stem.”) Could it have a similar effect? How much
difference do you think stopword removal, stemming, or combining words, e.g. “computer
science” instead of “computer” and “science” actually have in practice? (Since this question is
open-ended, there is no solution given.)

6

5 Solution

1. This is the list of terms
Term ID idf Term
1 1 ithaca
2 2 ’s
3 2 weather
4 2 is
5 2 rainy
6 2 a
7 2 student
8 2 studying
9 2 in
10 2 the
11 2 department
12 2 of
13 2 computer
14 2 science
15 2 at
16 2 cornell

The query is expressed (unnormalized) as:

q = (1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0)T

The idf function used here is:

idf =
docs in C

docs containing v(j)

The documents are represented as:

d(1) =
1√
17

(1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

and
d(2) =

1√
57

(1, 0, 0, 0, 0, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2)T

In this case, d(2) is selected because

q · d(1) =
1√
17

(1 + 2) ≈ 0.7276

q · d(2) =
1√
57

(1 + 4 + 2) ≈ 0.9272

7

2. The documents and query are now the following:

d(1) = ithaca ’s weather rainy
d(2) = student studying department computer science cornell ithaca
q = weather ithaca

This is the list of terms
Term ID idf Term
1 1 ithaca
2 2 ’s
3 2 weather
4 2 rainy
5 2 student
6 2 studying
7 2 department
8 2 computer
9 2 science
10 2 cornell

The query is expressed (unnormalized) as:

q = (1, 0, 1, 0, 0, 0, 0, 0, 0, 0)T

The documents are represented as:

d(1) =
1√
13

(1, 2, 2, 2, 0, 0, 0, 0, 0, 0)T

and
d(2) =

1
5
(1, 0, 0, 0, 2, 2, 2, 2, 2, 2)T

Now, d(1) is now selected because

q · d(1) =
1√
13

(1 + 2) ≈ 0.8321

q · d(2) =
1
5
(1) = .2

8

