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Searching for family members - (Durbin et al., Ch.5)

• Suppose we have a family of related sequences

• interested in searching the db for additional members

• Lazy ideas:

• choose a member

• try all members

• In either case we are loosing information

• better: combine information from all members

• The first step is to create a multiple alignment
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Multiple alignment of seven globins

<gaps><learning>
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Profile and Position Specific Scoring Matrix

• In this section we assume the alignment is given

• by structure alignment or multiple sequence alignment

• Ignore insertions/deletions for now

• Each position in the alignment has its own “profile” of conservation

• How do we score a sequence aligned to the family?

• Use these conservation profiles to define PSSMs, or Position Specific

Scoring Matrices
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Gribskov et al.’s PSSMs (87)

• One approach is to average the contributions from the substitution

matrix:

si(k) =
∑

j

αijS(k, j)

• αij is the frequency of the jth AA at the ith position

• S(k, j) is the score of substituting AA k with j

• If the family contains just one sequence (pairwise alignment) the

profile degenerates to one letter, xi, and

si(k) = S(k, xi)

• which is exactly the scoring matrix we use for pairwise alignment

• A downside of this approach is that it fails to distinguish between a

degenerate position 100 letters “deep” vs. 1 letter deep
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HMM’s derived PSSMs (Haussler et al. 93)

• An alternative approach is to think about the positions as states in an

HMM each with its own emission profile: p(x) =
∏

i ei(xi)
• At this point there is nothing hidden about this HMM

• To test for family membership we can evaluate the log-odds ratio

S =
∑

i

log
ei(xi)
q(xi)

• the PSSM si(x) := log ei(x)
q(x) replaces the substitution matrix

• The emissions probabilities can be quite flexible

• For example, in the case of a 1-sequence family we can set

ei(x) := p(x,xi)
q(xi)

. where p(x, y) is the joint probabilty from BLOSUM
• and si(x) = log p(x,xi)

q(x)q(xi)
= S(x, xi) as for pairwise alignment
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Mind the gap

• How should we handle gaps?

• Gribskov et al. suggested a heuristic that decreased the cost of a gap

(insertion or deletion) according to the length of the longest gap, in

the multiple alignment, that spanned that column

• this (again) ignores the popularity of the gap <globins>

• Alternatively, we can build a generative model that allows gaps
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“Evolution” of profile HMMs

• Profiles without gaps; match states emit according to eM(x)

• Allowing insertions; for insert states emissions eI(x) = q(x) typically

• using llr the score contribution of a k letter insert is

log aMjIj
+ (k − 1) log aIjIj

+ log aIjMj

corresponding to an affine gap penalty (in pairwise alignment)
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Evolution of profile HMMs - cont.

• Allowing for deletions

• Too many parameters: recall the silent states

• the cost of Di → Di+1 can vary

• Profile HMMs (Haussler et al. 93):
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Deriving profile HMMs from multiple alignment

• The first problem in deriving the profile HMM is that of determining

the length, or the number of gap states <globins>

• Heuristic: a column is a match state if it contains < 50% gaps

• for example

• With the topology of the HMM given the path generating every

sequence in the family is determined

• We can use maximum-likelihood with pseudo-counts to estimate the

parameters: akl and ek(x)
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Example of parameters estimation

• Using Laplace’s rule (add a pseudocount of 1 to each count) we have,

for example, for the emission probabilities at M1:

eM1(X) =


6
27 X = V
2
27 X ∈ {I,F}
1
27 X = AA other than V, I, F

• Similarly, using the same pseudocounts, we estimate the transitions

out of M1 by:aM1M2 = 7
10, aM1D2 = 2

10, and aM1I2 = 1
10
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Searching with profile HMMs

• To determine whether or not a new sequence belongs to the family we

need a similarity criterion

• analogous to the similarity score Needleman-Wunsch optimizes

• We can ask for the joint probability of the ML path and the data

• or, for the probability of the data given the model

• In either case for practical purposes log-odds ratio is prefferable

• Reminder: profile HMMs
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Viterbi equations (from Durbin et al.)

• Let V s
j (i) be the log-odds ratio of the best path matching x1:i to the

model that ends at state sj (s ∈ {M,D, I}). For j ≥ 1:

• Initial conditions: V M
0 (0) = 0 and V I

0 = log
eI0

(x0)

qx0
+ log aM0I0

• An end state needs to be added

• Similar to NW, only scores are position dependent
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Forward algorithm (from Durbin et al.)

• For s ∈ {M,D, I} let F s
j (i) = log PM(x1:i,Slast=sj)

PR(x1:i)

• As before PR(x) =
∏

i qxi

• FM
0 (0) = 0

• log(ex + ey) = x + log(1 + ey−x) and assuming wlog y < x one can

use a tabulated log(1 + h) for small h
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Example: searching for globins

• 300 randomly picked globin sequences generated profile HMM

• SWISS-PROT (r.34) which contained ∼ 60, 000 proteins was searched

• using the forward algorithm for computing both LL and LLR

. the null model was generated from the trainning set

• Note the difference in the variance and normalization problems
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• Choosing a cutoff of 0 for the LLR will lead to many false negatives:

• the training set is not sufficiently diverse

• Can use Z-scores to fix that:

• fit a smooth “average” curve to each of the non-globins graphs

• estimate a “local” standard deviation (use a small window)

• replace each score si by si−µ(li)
σ(li)

• LLR is a better predictor: without normalizing sequences with a

similar composition to globins tend to score higher
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Finding the average curve - moving average

• The data is modeled as random fluctuations about a determinstic

curve

• The original approach by Krogh et al. (94) used windows of roughly

500 non-globin sequences of similar length

• The scores and lengths in each window were averaged

• The average curve is the piecewise linear curve connecting the averages

• Linear regression was used in the first and last windows

• Standard deviations are computed per window

• Remove outliers, re-estimate average curve and iterate

• This is a slight modification of the moving average method
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Finding the average curve - LOWESS and LOESS

• LOWESS and LOESS (Cleveland 79,88) - locally weighted regression

and smoothing scatter plot

• use locally weighted polynomial regression to smooth data

. or, build the deterministic part of the variation in the data

• At each point (length) x0 of the data consider only the data in Nx0,

a local neighborhood of fixed size about x0

• regress data in Nx0 on first (LOWESS) or second (LOESS) degree

polynomials

• use weighted regression, with d := d(x0) := maxx∈Nx0
|x− x0|

tri-cube: w(x) =


[
1−

(
x−x0

d

)3
]3

|x− x0| < d

0 |x− x0| ≥ d

• Weighted regression: find minf

∑
i wi|yi − f(xi)|2


