Searching for family members - (Durbin et al., Ch.5)

1

- Suppose we have a family of related sequences
 - interested in searching the db for additional members
- Lazy ideas:
 - choose a member
 - try all members
- In either case we are loosing information
 - better: combine information from all members
- The first step is to create a multiple alignment

Multiple alignment of seven globins

Helix	AAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBBCCCCCCCC
HBA_HUMAN	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESF
MYG_PHYCA	VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP	DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA	PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU	GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI	GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus	Ls vaWkv g.Lf.P. FF

Helix FFGGGGGGGGGGGGGGGGGGGG НННННННННННННННННННННН HBA_HUMAN -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR------HBB_HUMAN -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-----MYG PHYCA -KIPIKYLEFISEAIIHVLHSRHPGDFGADAOGAMNKALELFRKDIAAKYKELGYOG GLB3_CHITP --VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM------GLB5_PETMA -OVDPOYFKVLAAVIADTVAAG-----DAGFEKLMSMICILLRSAY-----LGB2_LUPLU --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---GLB1_GLYDI KHIKAOYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLOS-----1.... f. aa.k.. l sky Consensus f v.

<gaps><learning>

Profile and Position Specific Scoring Matrix

- In this section we assume the alignment is given
 - by structure alignment or multiple sequence alignment
- Ignore insertions/deletions for now
- Each position in the alignment has its own "profile" of conservation
- How do we score a sequence aligned to the family?
- Use these conservation profiles to define PSSMs, or Position Specific Scoring Matrices

Gribskov et al.'s PSSMs (87)

 One approach is to average the contributions from the substitution matrix:

$$s_i(k) = \sum_j \alpha_{ij} S(k,j)$$

- α_{ij} is the frequency of the *j*th AA at the *i*th position
- $S(\boldsymbol{k},\boldsymbol{j})$ is the score of substituting AA \boldsymbol{k} with \boldsymbol{j}
- If the family contains just one sequence (pairwise alignment) the profile degenerates to one letter, x_i , and

$$s_i(k) = S(k, x_i)$$

- which is exactly the scoring matrix we use for pairwise alignment
- A downside of this approach is that it fails to distinguish between a degenerate position 100 letters "deep" vs. 1 letter deep

HMM's derived PSSMs (Haussler et al. 93)

- An alternative approach is to think about the positions as states in an HMM each with its own emission profile: $p(x) = \prod_i e_i(x_i)$
 - At this point there is nothing hidden about this HMM
- To test for family membership we can evaluate the log-odds ratio

$$S = \sum_{i} \log \frac{e_i(x_i)}{q(x_i)}$$

• the PSSM $s_i(x) := \log \frac{e_i(x)}{q(x)}$ replaces the substitution matrix

- The emissions probabilities can be quite flexible
 - For example, in the case of a 1-sequence family we can set e_i(x) := ^{p(x,x_i)}/_{q(x_i)}
 ▷ where p(x, y) is the joint probability from BLOSUM
 and s_i(x) = log ^{p(x,x_i)}/_{q(x)q(x_i)} = S(x, x_i) as for pairwise alignment

Mind the gap

- How should we handle gaps?
- Gribskov et al. suggested a heuristic that decreased the cost of a gap (insertion or deletion) according to the length of the longest gap, in the multiple alignment, that spanned that column
 - this (again) ignores the popularity of the gap <globins>
- Alternatively, we can build a generative model that allows gaps

"Evolution" of profile HMMs

• Profiles without gaps; match states emit according to $e_M(x)$

• Allowing insertions; for insert states emissions $e_I(x) = q(x)$ typically

• using IIr the score contribution of a k letter insert is

$$\log a_{M_j I_j} + (k-1) \log a_{I_j I_j} + \log a_{I_j M_j}$$

corresponding to an affine gap penalty (in pairwise alignment)

Evolution of profile HMMs - cont.

• Allowing for deletions

• Too many parameters: recall the silent states

- the cost of $D_i \rightarrow D_{i+1}$ can vary
- Profile HMMs (Haussler et al. 93):

Deriving profile HMMs from multiple alignment

- The first problem in deriving the profile HMM is that of determining the length, or the number of gap states <globins>
- Heuristic: a column is a match state if it contains < 50% gaps
 - for example

HBA_HUMAN	VGAHAGEY
HBB_HUMAN	VNVDEV
MYG_PHYCA	VEADVAGH
GLB3_CHITP	VKGD
GLB5_PETMA	VYSTYETS
LGB2_LUPLU	FNANIPKH
GLB1_GLYDI	IAGADNGAGV
	*** *****

- With the topology of the HMM given the path generating every sequence in the family is determined
- We can use maximum-likelihood with pseudo-counts to estimate the parameters: a_{kl} and $e_k(x)$

Example of parameters estimation

HBA_HUMAN	VGAHAGEY
HBB_HUMAN	VNVDEV
MYG_PHYCA	VEADVAGH
GLB3_CHITP	VKGD
GLB5_PETMA	VYSTYETS
LGB2_LUPLU	FNANIPKH
GLB1_GLYDI	IAGADNGAGV
	*** *****

 Using Laplace's rule (add a pseudocount of 1 to each count) we have, for example, for the emission probabilities at M₁:

$$e_{M_1}(X) = \begin{cases} \frac{6}{27} & X = \mathtt{V} \\ \frac{2}{27} & X \in \{\mathtt{I},\mathtt{F}\} \\ \frac{1}{27} & X = \mathtt{A}\mathtt{A} \text{ other than } \mathtt{V}, \mathtt{I}, \mathtt{F} \end{cases}$$

• Similarly, using the same pseudocounts, we estimate the transitions out of M_1 by: $a_{M_1M_2} = \frac{7}{10}$, $a_{M_1D_2} = \frac{2}{10}$, and $a_{M_1I_2} = \frac{1}{10}$

Searching with profile HMMs

- To determine whether or not a new sequence belongs to the family we need a similarity criterion
 - analogous to the similarity score Needleman-Wunsch optimizes
 - We can ask for the joint probability of the ML path and the data
 - or, for the probability of the data given the model
 - In either case for practical purposes log-odds ratio is prefferable

• Reminder: profile HMMs

Viterbi equations (from Durbin et al.)

Let V^s_j(i) be the log-odds ratio of the best path matching x_{1:i} to the model that ends at state s_j (s ∈ {M, D, I}). For j ≥ 1:

$$\begin{split} V_{j}^{M}(i) &= \log \frac{e_{M_{j}}(x_{i})}{q_{x_{i}}} + \max \begin{cases} V_{j-1}^{M}(i-1) + \log a_{M_{j-1}M_{j}}, \\ V_{j-1}^{I}(i-1) + \log a_{I_{j-1}M_{j}}, \\ V_{j-1}^{D}(i-1) + \log a_{D_{j-1}M_{j}}; \end{cases} \\ V_{j}^{I}(i) &= \log \frac{e_{I_{j}}(x_{i})}{q_{x_{i}}} + \max \begin{cases} V_{j}^{M}(i-1) + \log a_{M_{j}I_{j}}, \\ V_{j}^{I}(i-1) + \log a_{I_{j}I_{j}}, \\ V_{j}^{D}(i-1) + \log a_{D_{j}I_{j}}; \end{cases} \\ V_{j}^{D}(i-1) + \log a_{D_{j}I_{j}}; \end{cases} \\ V_{j}^{D}(i) &= \max \begin{cases} V_{j-1}^{M}(i) + \log a_{M_{j-1}D_{j}}, \\ V_{j-1}^{I}(i) + \log a_{D_{j-1}D_{j}}, \\ V_{j-1}^{D}(i) + \log a_{D_{j-1}D_{j}}. \end{cases} \end{split}$$

- Initial conditions: $V_0^M(0) = 0$ and $V_0^I = \log \frac{e_{I_0}(x_0)}{q_{x_0}} + \log a_{M_0I_0}$
- An end state needs to be added
- Similar to NW, only scores are position dependent

Forward algorithm (from Durbin et al.)

• For $s \in \{M, D, I\}$ let $F_j^s(i) = \log \frac{P_M(\boldsymbol{x}_{1:i}, S_{\mathsf{last}} = s_j)}{P_R(\boldsymbol{x}_{1:i})}$

$$\begin{split} F_{j}^{M}(i) &= \log \frac{e_{M_{j}}(x_{i})}{q_{x_{i}}} + \log \left[a_{M_{j-1}M_{j}} \exp \left(F_{j-1}^{M}(i-1) \right) \right. \\ &+ a_{I_{j-1}M_{j}} \exp \left(F_{j-1}^{I}(i-1) \right) + a_{D_{j-1}M_{j}} \exp \left(F_{j-1}^{D}(i-1) \right) \right]; \\ F_{j}^{I}(i) &= \log \frac{e_{I_{j}}(x_{i})}{q_{x_{i}}} + \log \left[a_{M_{j}I_{j}} \exp \left(F_{j}^{M}(i-1) \right) \right. \\ &+ a_{I_{j}I_{j}} \exp \left(F_{j}^{I}(i-1) \right) + a_{D_{j}I_{j}} \exp \left(F_{j}^{D}(i-1) \right) \right]; \\ F_{j}^{D}(i) &= \log \left[a_{M_{j-1}D_{j}} \exp \left(F_{j-1}^{M}(i) \right) + a_{I_{j-1}D_{j}} \exp \left(F_{j-1}^{I}(i) \right) \right. \\ &+ a_{D_{j-1}D_{j}} \exp \left(F_{j-1}^{D}(i) \right) \right]. \end{split}$$

- As before $P_R(\boldsymbol{x}) = \prod_i q_{x_i}$
- $F_0^M(0) = 0$
- $\log(e^x + e^y) = x + \log(1 + e^{y-x})$ and assuming wlog y < x one can use a tabulated $\log(1+h)$ for small h

Example: searching for globins

- 300 randomly picked globin sequences generated profile HMM
- SWISS-PROT (r.34) which contained $\sim 60,000$ proteins was searched
 - using the forward algorithm for computing both LL and LLR
 - b the null model was generated from the trainning set

Note the difference in the variance and normalization problems

- Choosing a cutoff of 0 for the LLR will lead to many false negatives:
 - the training set is not sufficiently diverse
- Can use Z-scores to fix that:
 - fit a smooth "average" curve to each of the non-globins graphs
 - estimate a "local" standard deviation (use a small window)
 - replace each score s_i by $\frac{s_i \mu(l_i)}{\sigma(l_i)}$

 LLR is a better predictor: without normalizing sequences with a similar composition to globins tend to score higher

Finding the average curve - moving average

- The data is modeled as random fluctuations about a deterministic curve
- The original approach by Krogh et al. (94) used windows of roughly 500 non-globin sequences of similar length
- The scores and lengths in each window were averaged
- The average curve is the piecewise linear curve connecting the averages
- Linear regression was used in the first and last windows
- Standard deviations are computed per window
- Remove outliers, re-estimate average curve and iterate
- This is a slight modification of the moving average method

Finding the average curve - LOWESS and LOESS

- LOWESS and LOESS (Cleveland 79,88) locally weighted regression and smoothing scatter plot
 - use locally weighted polynomial regression to smooth data
 or, build the deterministic part of the variation in the data
- At each point (length) x_0 of the data consider only the data in N_{x_0} , a local neighborhood of fixed size about x_0
 - regress data in N_{x_0} on first (LOWESS) or second (LOESS) degree polynomials
 - use weighted regression, with $d := d(x_0) := \max_{x \in N_{x_0}} |x x_0|$

tri-cube:
$$w(x) = \begin{cases} \left[1 - \left(\frac{x - x_0}{d}\right)^3\right]^3 & |x - x_0| < d \\ 0 & |x - x_0| \ge d \end{cases}$$

• Weighted regression: find $\min_f \sum_i w_i |y_i - f(x_i)|^2$