Searching for family members - (Durbin et al., Ch.5)

® Suppose we have a family of related sequences

o interested in searching the db for additional members

® Lazy ideas:

e choose a member
o try all members

® |n either case we are loosing information

o better: combine information from all members

® The first step is to create a multiple alignment
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Multiple alighment of seven globins
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Profile and Position Specific Scoring Matrix

In this section we assume the alignment is given

o by structure alignment or multiple sequence alignment
Ignore insertions/deletions for now
Each position in the alignment has its own “profile” of conservation
How do we score a sequence aligned to the family?

Use these conservation profiles to define PSSMs, or Position Specific
Scoring Matrices



Gribskov et al.’s PSSMs (87)

® One approach is to average the contributions from the substitution
matrix:

si(k) =) aiS(k, j)
J
o «y; Is the frequency of the jth AA at the ith position

o S(k,j) is the score of substituting AA k with j

e If the family contains just one sequence (pairwise alignment) the
profile degenerates to one letter, x;, and

o which is exactly the scoring matrix we use for pairwise alignment

® A downside of this approach is that it fails to distinguish between a
degenerate position 100 letters “deep” vs. 1 letter deep



HMM’s derived PSSMs (Haussler et al. 93)

® An alternative approach is to think about the positions as states in an
HMM each with its own emission profile: p(x) =[], ei(x;)

o At this point there is nothing hidden about this HMM

® To test for family membership we can evaluate the log-odds ratio
e;(r;)

S = log
2% )

o the PSSM s;(x) := logM replaces the substitution matrix
q(x)

® The emissions probabilities can be quite flexible

o For example, in the case of a 1-sequence family we can set

ei(e) = !

where p(x,y) is the joint probabilty from BLOSUM

o and s;(z) = log q](’a(;f(’;(j;)i) = S(x,x;) as for pairwise alignment




Mind the gap

® How should we handle gaps?

® Gribskov et al. suggested a heuristic that decreased the cost of a gap
(insertion or deletion) according to the length of the longest gap, in
the multiple alignment, that spanned that column

o this (again) ignores the popularity of the gap <gobins>

® Alternatively, we can build a generative model that allows gaps



“Evolution” of profile HMMs

® Profiles without gaps; match states emit according to ep;(x)

e Allowing insertions; for insert states emissions e;(x) = g(x) typically

o using llr the score contribution of a k£ letter insert is

logans;1; + (k—1)logar ;. +1ogar.

corresponding to an affine gap penalty (in pairwise alignment)



Evolution of profile HMMs - cont.

® Allowing for deletions

(oo

® Too many parameters: recall the silent states

D;

! | -
|au‘,:.. 5 —>{ M; > —»| End

o the cost of D; — D;1 1 can vary

® Profile HMMs (Haussler et al. 93):

D;




Deriving profile HMMs from multiple alignment
® The first problem in deriving the profile HMM is that of determining
the length, or the number of gap states —obins>

® Heuristic: a column is a match state if it contains < 50% gaps

o for example

HBA_HUMAN . .VGA--HAGEY. ..
HBB_HUMAN . .V----NVDEV...
MYG_PHYCA . .VEA--DVAGH. . .
GLB3_CHITP JVKG-==~~~ D.

GLBS_PETMA ...VYS--TYETS...
LGB2_LUPLU ...FNA--NIPKH...
GLB1_GLYDI ...IAGADNGAGV..

* k% ok ok ok ok

e With the topology of the HMM given the path generating every
sequence in the family is determined

® We can use maximum-likelihood with pseudo-counts to estimate the
parameters: ay; and e (x)



HBA_HUMAN . .VGA--HAGEY. ..
HBB_HUMAN ..V----NVDEV. ..
MYG_PHYCA . .VEA--DVAGH. ..
GLB3_CHITP .VKG---—-- D.

GLB5_PETMA ...VYS--TYETS...
LGB2_LUPLU ...FNA--NIPKH...
GLB1_GLYDI . . IAGADNGAGV. . .

Example of parameters estimation

% % & % & ook k

® Using Laplace's rule (add a pseudocount of 1 to each count) we have,
for example, for the emission probabilities at Mj:

y

X =V
X € {I,F}
X = AA other thanV, I, F

eﬂil()() = <

Nl= S Jfe

\

e Similarly, using the same pseudocounts, we estimate the transitions

: _ 7 _ 2 _ 1
out of M; by.CLMlM2 = 10" @M1 Dy = g and ap, I, = 1



Searching with profile HMMs

® To determine whether or not a new sequence belongs to the family we
need a similarity criterion
o analogous to the similarity score Needleman-Wunsch optimizes
o We can ask for the joint probability of the ML path and the data
o or, for the probability of the data given the model
o In either case for practical purposes log-odds ratio is prefferable

® Reminder: profile HMMs
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Viterbi equations (from Durbin et al.)

® Let Vf(z) be the log-odds ratio of the best path matching x;.; to the

model that ends at state s; (s € {M,D,I}). For j > 1

ewm; (xi)

VMi) = log V(i —1)+logay_,m;

1»}111(:' —1)+logap,_,u;;

qx;

vjﬁ[{f - i) + lﬂgah’lj_|h|j|
+ max

VM@ — 1) +logawy;,
” ey; (xi) 0.
‘lf}{l} = log - + max 13({-—1)+10ga|j,j,
' VP(i —1)+logap,;
{ VM (i) +logaw,_,p,,

VP() = max{ V' (i)+logay_p;,

VP () +logap, o,

e Initial conditions: V¥ (0) = 0 and V{ = log 612(330) + log a1,
0

® An end state needs to be added

® Similar to NW, only scores are position dependent
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Forward algorithm (from Durbin et al.)

® For s € {M,D, I} let F}(i) = log PM(:;;?’jl'f?;:Sj)

M, EM; {IIJ
F'(i) = log—

+log [am;_,m exp (F2,G — 1))

Xy

+ay_,m;exp (Fj_ (i = 1)) +ap,_; exp (F (i — 1)]:

F;(:') = log ]"(x }+lu::-g[-:1,_..,[r exp(FHﬂwI))
+ ayy exp (Fj(i — 1)) +ap,, exp (F G — )]
FPU) = log[aw, o, exp(F, () +ay,_ v, exp (F/_, ()

+ dp;_,p; exp(ﬂ[i,(i))] '

® As before Pr(x) =[], ¢,
e [M(0)=0

® log(e” +¢e¥) = x + log(1 4+ e¥~%) and assuming wlog y < x one can
use a tabulated log(1 + h) for small h
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Example: searching for globins

® 300 randomly picked globin sequences generated profile HMM

e SWISS-PROT (r.34) which contained ~ 60, 000 proteins was searched

o using the forward algorithm for computing both LL and LLR
the null model was generated from the trainning set
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® Note the difference in the variance and normalization problems



® Choosing a cutoff of 0 for the LLR will lead to many false negatives:

 the training set is not sufficiently diverse

® Can use Z-scores to fix that:

o fit a smooth “average’ curve to each of the non-globins graphs
o estimate a “local” standard deviation (use a small window)

si— (i)
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o LLR is a better predictor: without normalizing sequences with a
similar composition to globins tend to score higher
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Finding the average curve - moving average

® The data is modeled as random fluctuations about a determinstic
curve

® The original approach by Krogh et al. (94) used windows of roughly
500 non-globin sequences of similar length

® [he scores and lengths in each window were averaged

® The average curve is the piecewise linear curve connecting the averages
® Linear regression was used in the first and last windows

® Standard deviations are computed per window

® Remove outliers, re-estimate average curve and iterate

® This is a slight modification of the moving average method



Finding the average curve - LOWESS and LOESS

e LOWESS and LOESS (Cleveland 79,88) - locally weighted regression
and smoothing scatter plot

o use locally weighted polynomial regression to smooth data
or, build the deterministic part of the variation in the data

® At each point (length) x( of the data consider only the data in N,
a local neighborhood of fixed size about xg

o regress data in N, on first (LOWESS) or second (LOESS) degree
polynomials

» use weighted regression, with d := d(z¢) := maxzen,, |* — Zo|

2317
[1_(96;0)} iz — 20| < d
0 |z — xg| > d

tri-cube: w(x) =

» Weighted regression: find min; >_. wq|y; — f ()|
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