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Pairwise alignment using HMMs - Ch.4 Durbin et al.

® Recall the Needleman-Wunsch algorithm for affine gap penalty:

VMG —1,5-1)
VM(i,5) = s(wi,y;) + max S VX (i — 1,5 — 1)
VY¥(i—1,57-1)

(

VMG —1,5)—d

VE(i,§) = max <
o7 VXG-1,4) - e

(VM5 —1)—d
VY, —1) —e
V(m,n) = max{V*(m,n), V=(m,n), V"' (m,n)}

V¥ (i,7) = max ¢

® \We can now give a probabilistic interpretation of this algorithm using
a slightly generalized notion of HMM vitewis <ratio>



“Pair HMMs"

® A pair HMM generates an alignment by simultaneously producing two
sequences of symbols

® The M (match) state emits a pair of symbols, one for each sequence:
(%35, 95) ~ p(xi, Y;)
® The X (x-insertion) state emits only an “X symbol”: x; ~ q(x;)

® The Y (y-insertion) state emits only a Y symbol”: Yj ~ q(yj)



Pair HMM - cont.

® [he model above does not generate a probability distribution over all
possible sequences

» for that we need to add Begin and End states:

o The expected length of the generated alignment is %
o The transitions of the Markov chain are given by pyp/v = PV =
1 —20 -7, puyx =pPmy =0, pxx =€, pxm = 1 —¢€ — 9, etc.



Most probable alignment

® \We can only observe x and y: unlike in HMMs we cannot observe the
joint emission from the M state

® Let §;; be the set of paths s compatible with an alignment of x;
and .,
o i.e. the path visits states {M, X} exatly ¢ times and states
{M,Y} exatly j times

® Given the observed sequences « and y, S,,,, is in 1:1 correspondence
with the set of alignments of « and y

® The advantage of the pair HMM framework is now we can ask for the
most probable alignment given the data

» same as maximizing p(x,y, s) over the path s



Most probable alignment - cont.
® Foraec {M,X,Y} let

X7 7)) = X1, ,-78 . ,
v (Z,]) SES?:?E%'};'):OKP( 1:05 Y154 1.|S|)

where |s| is the length of the alignment of s.

® (Clearly,

max p(x,y, s) = max{v" (m,n),v
S

o note that the rhs is in fact v¥(m,n)

® The following claim shows how to recursively compute v (3, j)



Viterbi for pair HMM
e Clam. Form>:>0,n>75>0with?z+ 7 > 0:

PMM - UM(Z o 17] T 1)
UM(Z,j) — p(.ﬁljz‘,yj) - IMaXx PXM - ?}X(i — 1,j — 1)

pym-vi(i—1,5—1)

pux oM —1,7)

X /- -
v (4, J) = q(2;) - max < | .
Z pxx vt (i —1,7)

pay - oM (i, 5 — 1)

\
v (4,7) = q(y;) - max < o
! pyy - v (4,5 — 1)

where v®(i, —1) = v*(—1, ) = v!*¥¥)(0,0) = 0, and v™(0,0) :=1
» vM(0,0) is in fact a surrogate for v2(0,0)

<Needleman-Wunsch> <ratio>



Viterbi for pair HMM - cont.

® This algorithm is similar but still differs from Needleman-Wunsch

o logarithms should be used

o log-odds ratio rather than log-odds are computed
(BLOSUM/PAM)

® The following random model simply dumps the symbols of « and the
y without any correlation (no match states)




Viterbi for maximal log-odds ratio

® Look for the path s that maximizes the log-odds ratio log Zﬂé((j’;f’g))

pM<w1:’i7y1:j781:|S|)
pR(w1:i7y1:j731:|s|)

® Let V(i,j) = maXses, . :s(|s|)=a 108

® Analogously to the log-odds case we have

log(f‘;i“i + VMG —-1,5-1)

VM, §) = log ]Z(x)i’i’j)) + max { log 22 4 V(i 1,5 — 1)
q\Z;)q\y; B

3 log 226 + VY (i~ 1,5 1)

; 1 pr + VM@ =1
V*(1,7) = log q(xi) + max < %51 N (4 J)
q(x;)  log 1XX + V(i —1,7)
: 1 pMY VM —1
VY(Z7 .]) lOg Q(yj) _l_ max < Og —|_ (Z j ) <Needleman-Wunsch>
q(y;) log 7% pYY -+ V¥(,7—-1)



Viterbi as Needleman-Wunsch

® [o see the equivalence more clearly it is convenient to introduce

p(CL, b) PM M
s(a,b) = log + log
q(a)q(b) (1—n)?
—d =log PymMx)y + log Px/yMm
(1—mn) PM M
PXX/YY
—e = log
L—=mn
® s(a,b) “assumes” we come from M
o d “pre-corrects’ that by adding ¢ := log p;(AZEM

e Only n? and the transitions from X/Y to E are left unbalanced:

VM(0,0) := —2logn

VE(m,n) = max{VM(m,n),V:(m,n) —c, V¥ (m,n) — c}



pair HMM for local alighment

® As before we can look for optimal log-odds or log-odds ratio paths
(the latter case will yield Smith-Waterman)



The likelihood that « and y are aligned

® While it is interesting to note that the Needleman-Wunsch algorithm
can be cast in the language of HMM

® The real power of the HMM framework is that it allows us to answer
questions such as
o what is the likelihood that & and y are aligned, i.e., that they

were generated by the model?

® The answer is the probability that @, y will be generated by the model
p(x,y) =) sp(x,Y,s)

® An analogue of the forward algorithm computes that: let

fa(iaj) = P(Xlzi — L4, Yl:j = Y15 S(Tij) — Oé), where
k

k
Tiq «— mm{k : Z 1S(Z)E{M,X} = ¢ and Z 1S(l)€{M,Y} — ]}
[=1 [=1
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The likelihood that  and y are aligned - cont.

® Claim. With the initial conditions
Mo0,00=1 fXYN0,00=0 fo>G,-1) = f*(-1,5) =0,
fori >0, 7 >0 with7+4+ 5 > 0:

MG 5) = plesy) v - (=10 = 1) +pxar- [ (- 1,5 — 1)
+pyar - fr(i—1,5—1)]

f20,9) = a(za)lpmx - FM6E—1,7) +pxx - fF (0 —1,5)]

i, g) = q(y;) pmy - MG, =D +pyy - 73,7 —1)],

p(x,y) = fE(m,n) = 7[f¥(m,n) + f7(m,n) + 7 (m,n)]
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Posterior distribution of an alignment

e With p(x,y) we can find the posterior distribution of any particular

alignment s: p(s|z,y) = p}g‘(i;:y?ﬁ)

o In particular we can apply it for s*, the Viterbi solution

o The answer is typically depressingly small
For example in the alpha globing vs. leghemoglobin case:

(b) Lupin leghemoglobin

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL
++ ++++H+ KV + +A  ++ +L+ L+++H+ K

LGBZ_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

p(s*|x,y) = 4.6 x 107°
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Sampling from the posterior distribution

® Given the poor posterior probability of the Viterbi alignment

o are there parts of the alignment which we are more confident of ?
e can we estimate posterior expectation of functionals of the align-

ment as in posterior decoding?
® We can do that through MC sampling from the posterior distribution

» backward sampling (using forward algorithm)
o forward sampling (using backward algorithm)
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The backward algorithm

® Analogously to the backward function for HMMs we define
b“(4,7) == P(Xit1:m = Tit1:m, Y j+1n = Y10, 9 (Tij) = @), where

k k
Tij «— mm{k . E 1S(Z)G{M,X} — ¢ and E 1S(Z)E{M,Y} = ]}
[=1 [=1

Algorithm: Backward calculation for pair HMMs

Initialisation:
M(n,m) = bX(n,m) = b¥(n,m) = 1.
Allb°(i,m+1),b°(n+1, j) are set to 0.

® Durbin et a|_: Recursion: i =n,...,1,j =m,...,1 except (n,m);
MU, j) = (1-28—1)pg, y WMGE+1,j+1)
+ 8 [qu DX+ 1, ) + gy, 067G j+ D]

G, J) = (I—e=1)psy M+ 1L j+ D 4egy, bXG + 1, j);
bY(i,J) = (l=e—=1)pe 1y BME+1,j+ ) +eqy,, bYG, j+1).

» as before we can add v*(0,0) as a surrogate for 4%(0,0)
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Forward posterior sampling (backward algorithm)

® [nductively draw from the posterior distribution as follows:
o start at state B with (¢,7) := (0,0)
o while (¢,7) # (m,n):
given our hitherto path s € S(¢,7) randomly choose our
next state « according to P[S(|s|+ 1) = a|x, vy, s]
update: s = s A «, and
(4,7) == (" (a), 7 (a)) :== (i + locim,xy,J + 1a€{M,Y})
» output the resulting s € S(m,n) (why is s € S(m,n)?)
e Claim. The probability that we draw a path s € S(m,n) is p(s|z,y)

® Proof. To simplify notations assume s(0) = B does not count toward
|s|. Then

s

p(slz,y) = | [ p(s()|2,y, s0:-1)

1=1

16



Forward posterior sampling - cont.

® The algorithm hinges on finding

p(s Na,x,y)
p(s,z,y)

P5(ls|+1) = alz,y, s] =
® Using the properties of the HMM we have:

p(s N, x,y) = p(x14,Y;.5,S)
x P[S(|s| +1) = a,z(i" (@), y(i " ()]s, y;. 8]
X p[wi+(oz)+1:m7 yj"’(a)—l—lzn‘s("s’ +1) =q
P[S(|s| + 1) = a,z(i" (@), y(j " () |2, yj, 8]
Ps(ls),nr - p(x(i+1),y(7 + 1))

(@
Ps(1s)),x - q(x(i + 1)) Q
Ps(s),y - q(y(7 + 1)) a

M
X
Y

17



® Note that

18

p[wi+(a)+1:m7 yj+(oz)—|—1:n’S(’S| + 1) — Oé] — ba(’i+(()z),j+(&))

e Finally,

p(8, %, Y) = p(T1:is Y1.55 $)P(Tit 1:ms Yj 1.0 S)
— p(mlzia yl:j7 8)b8(|8|)(27])

Thus,

X

b (i (), 5" (o))
bs(1sD (7, 1)

P[S(ls| +1) = alz,y,s| =

y

Ps(ls)y,nr - P(x(@ + 1),y + 1))
Ps(|s]),X q(ili(’t + 1))

o 9 9
I
< <=

Ps(lsl),y - 4(y(j + 1))
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Posterior probability that z; is aligned to y;

® We can estimate the posterior probability that x; is aligned to y; by
posterior sampling of alignments

o but we can also compute it directly
analogous to computing P(S(i) = k|x) for HMMs

® Let X, oY, denote the event X; is aligned to Y}, then
P(X=2Y =y,X;0Y)) = P(X1;, =1, Y1, = Y1.;, S(135) = M)
X P[Xi+1:m — Li+1:m Yj—|—1:n — yj—|—1:n|S(T73j) — M]
= (i, )b™ (i, 5)
therefore

R L CF ) I sl OF ) e CF)
p(x,y) fE(m,n)

P(X;oVj|X =2,Y =y) =
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Optimizing for the “expected accuracy”

® An intuitively appealing measure of the accuracy of s is

A(s) = Y plzioyjlz, y)

MijES

o A(s) is the expected overlap in M states between s and a
random alignment drawn according to the posterior distribution

e Finding a path s which maximizes A(s) is easy: let A(i,j) be the
optimal accuracy we can gain using only x1.; and y, .,

A(7,7) = max <

/

\

A(t—1,5 — 1) + p(a; o yjlz, y)
A(Zaj o 1)



Viterbi failure

® Can the Viterbi algorithm discriminate between data generated by the
following model vs. the random one?

® Maximizing the log-likelihood or llr is equivalent here

e If a*q(a)q(b)g(a)q(c) > 1 — a then pg(abac) > pp(abac) and the
Viterbi path will never visit state B

® Since state S is random, the Viterbi path cannot discriminate between
the model and random data

21
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Viterbi failure - cont.

® However, if the data is long enough clearly the model is distinguishable
from random:

o folabac) — ppr(abac) > pg(abac)
» so simply observing the frequency of abac should work for suffi-
ciently long sequences

® Maximizing the likelihood is not always the appropriate approach

® However, comparing pys(x) and pgr(ax) should discriminate the two
models

o as this is the optimal test and we just saw we can discriminate

® Bonus points: figure out Figure 4.8



