
1

Pairwise alignment using HMMs - Ch.4 Durbin et al.

• Recall the Needleman-Wunsch algorithm for affine gap penalty:

V M(i, j) = s(xi, yj) + max


V M(i− 1, j − 1)

V X(i− 1, j − 1)

V Y (i− 1, j − 1)

V X(i, j) = max

{
V M(i− 1, j)− d

V X(i− 1, j)− e

V Y (i, j) = max

{
V M(i, j − 1)− d

V Y (i, j − 1)− e

V (m,n) = max{V M(m,n), V X(m,n), V Y (m,n)}

• We can now give a probabilistic interpretation of this algorithm using

a slightly generalized notion of HMM <Viterbi><ratio>

2

“Pair HMMs”

• A pair HMM generates an alignment by simultaneously producing two

sequences of symbols

• The M (match) state emits a pair of symbols, one for each sequence:

(xi, yj) ∼ p(xi, yj)

• The X (x-insertion) state emits only an “X symbol”: xi ∼ q(xi)

• The Y (y-insertion) state emits only a “Y symbol”: yj ∼ q(yj)

3

Pair HMM - cont.

• The model above does not generate a probability distribution over all

possible sequences

• for that we need to add Begin and End states:

• The expected length of the generated alignment is 1
τ

• The transitions of the Markov chain are given by pMM = pBM =
1− 2δ − τ , pMX = pMY = δ, pXX = ε, pXM = 1− ε− δ, etc.

4

Most probable alignment

• We can only observe x and y: unlike in HMMs we cannot observe the

joint emission from the M state

• Let Sij be the set of paths s compatible with an alignment of x1:i

and y1:j

• i.e. the path visits states {M,X} exatly i times and states

{M,Y } exatly j times

• Given the observed sequences x and y, Smn is in 1:1 correspondence

with the set of alignments of x and y

• The advantage of the pair HMM framework is now we can ask for the

most probable alignment given the data

• same as maximizing p(x,y, s) over the path s

5

Most probable alignment - cont.

• For α ∈ {M,X, Y } let

vα(i, j) = max
s∈Sij:s(|s|)=α

p(x1:i,y1:j, s1:|s|),

where |s| is the length of the alignment of s.

• Clearly,

max
s

p(x,y, s) = max{vM(m,n), vX(m,n), vY (m,n)} · τ

• note that the rhs is in fact vE(m,n)

• The following claim shows how to recursively compute vα(i, j)

6

Viterbi for pair HMM

• Claim. For m ≥ i ≥ 0, n ≥ j ≥ 0 with i + j > 0:

vM(i, j) = p(xi, yj) ·max


pMM · vM(i− 1, j − 1)

pXM · vX(i− 1, j − 1)

pY M · vY (i− 1, j − 1)

vX(i, j) = q(xi) ·max

{
pMX · vM(i− 1, j)

pXX · vX(i− 1, j)

vY (i, j) = q(yj) ·max

{
pMY · vM(i, j − 1)

pY Y · vY (i, j − 1)

where v•(i,−1) = v•(−1, j) = v[XY](0, 0) = 0, and vM(0, 0) := 1
• vM(0, 0) is in fact a surrogate for vB(0, 0)

<Needleman-Wunsch><ratio>

7

Viterbi for pair HMM - cont.

• This algorithm is similar but still differs from Needleman-Wunsch

• logarithms should be used

• log-odds ratio rather than log-odds are computed

(BLOSUM/PAM)

• The following random model simply dumps the symbols of x and the

y without any correlation (no match states)

pR(x,y) = η(1− η)m
m∏

i=1

q(xi)η(1− η)n
n∏

j=1

q(yj)

8

Viterbi for maximal log-odds ratio

• Look for the path s that maximizes the log-odds ratio log pM(s,x,y)
pR(s,x,y)

• Let V α(i, j) = maxs∈Sij:s(|s|)=α log
pM(x1:i,y1:j,s1:|s|)

pR(x1:i,y1:j,s1:|s|)

• Analogously to the log-odds case we have

V M(i, j) = log
p(xi, yj)

q(xi)q(yj)
+ max


log pMM

(1−η)2
+ V M(i− 1, j − 1)

log pXM

(1−η)2
+ V X(i− 1, j − 1)

log pY M

(1−η)2
+ V Y (i− 1, j − 1)

V X(i, j) = log
q(xi)
q(xi)

+ max

{
log pMX

1−η + V M(i− 1, j)

log pXX
1−η + V X(i− 1, j)

V Y (i, j) = log
q(yj)
q(yj)

+ max

{
log pMY

1−η + V M(i, j − 1)

log pY Y
1−η + V Y (i, j − 1)

<Needleman-Wunsch>

9

Viterbi as Needleman-Wunsch

• To see the equivalence more clearly it is convenient to introduce

s(a, b) = log
p(a, b)

q(a)q(b)
+ log

pMM

(1− η)2

−d = log
pMX/Y

(1− η)
+ log

pX/Y M

pMM

−e = log
pXX/Y Y

1− η

• s(a, b) “assumes” we come from M

• d “pre-corrects” that by adding c := log
pX/Y M

pMM

• Only η2 and the transitions from X/Y to E are left unbalanced:

V M(0, 0) := −2 log η

V E(m,n) := max{V M(m,n), V X(m,n)− c, V Y (m,n)− c}

10

pair HMM for local alignment

• As before we can look for optimal log-odds or log-odds ratio paths

(the latter case will yield Smith-Waterman)

11

The likelihood that x and y are aligned

• While it is interesting to note that the Needleman-Wunsch algorithm

can be cast in the language of HMM

• The real power of the HMM framework is that it allows us to answer

questions such as

• what is the likelihood that x and y are aligned, i.e., that they

were generated by the model?

• The answer is the probability that x,y will be generated by the model

p(x,y) =
∑

s p(x,y, s)

• An analogue of the forward algorithm computes that: let

fα(i, j) := P (X1:i = x1:i,Y 1:j = y1:j, S(τij) = α), where

τij := min{k :
k∑

l=1

1S(l)∈{M,X} = i and
k∑

l=1

1S(l)∈{M,Y } = j}

12

The likelihood that x and y are aligned - cont.

• Claim. With the initial conditions

fM(0, 0) = 1 f [XY](0, 0) = 0 f•(i,−1) = f•(−1, j) = 0,

for i ≥ 0, j ≥ 0 with i + j > 0:

fM(i, j) = p(xi, yj)[pMM · fM(i− 1, j − 1) + pXM · fX(i− 1, j − 1)

+ pY M · fY (i− 1, j − 1)]

fX(i, j) = q(xi)[pMX · fM(i− 1, j) + pXX · fX(i− 1, j)]

fY (i, j) = q(yj)[pMY · fM(i, j − 1) + pY Y · fY (i, j − 1)],

and

p(x,y) = fE(m,n) = τ [fM(m,n) + fX(m,n) + fY (m,n)]

13

Posterior distribution of an alignment

• With p(x,y) we can find the posterior distribution of any particular

alignment s: p(s|x,y) = p(x,y,s)
p(x,y)

• In particular we can apply it for s∗, the Viterbi solution

• The answer is typically depressingly small

. For example in the alpha globing vs. leghemoglobin case:

. p(s∗|x,y) = 4.6× 10−6

14

Sampling from the posterior distribution

• Given the poor posterior probability of the Viterbi alignment

• are there parts of the alignment which we are more confident of?

• can we estimate posterior expectation of functionals of the align-

ment as in posterior decoding?

• We can do that through MC sampling from the posterior distribution

• backward sampling (using forward algorithm)

• forward sampling (using backward algorithm)

15

The backward algorithm

• Analogously to the backward function for HMMs we define

bα(i, j) := P (Xi+1:m = xi+1:m,Y j+1:n = yj+1:n, S(τij) = α), where

τij := min{k :
k∑

l=1

1S(l)∈{M,X} = i and
k∑

l=1

1S(l)∈{M,Y } = j}

• Durbin et al.:

• as before we can add bM(0, 0) as a surrogate for bB(0, 0)

16

Forward posterior sampling (backward algorithm)

• Inductively draw from the posterior distribution as follows:

• start at state B with (i, j) := (0, 0)
• while (i, j) 6= (m,n):

. given our hitherto path s ∈ S(i, j) randomly choose our

next state α according to P [S(|s|+ 1) = α|x,y, s]
. update: s = s ∧ α, and

(i, j) := (i+(α), j+(α)) := (i + 1α∈{M,X}, j + 1α∈{M,Y })
• output the resulting s ∈ S(m,n) (why is s ∈ S(m,n)?)

• Claim. The probability that we draw a path s ∈ S(m,n) is p(s|x,y)

• Proof. To simplify notations assume s(0) = B does not count toward

|s|. Then

p(s|x,y) =
|s|∏
i=1

p(s(i)|x,y, s0:i−1)

17

Forward posterior sampling - cont.

• The algorithm hinges on finding

P [S(|s|+ 1) = α|x,y, s] =
p(s ∧ α, x,y)

p(s,x,y)

• Using the properties of the HMM we have:

p(s ∧ α, x,y) = p(x1:i,y1:j, s)

× P [S(|s|+ 1) = α, x(i+(α)), y(j+(α))|xi, yj, s]

× p[xi+(α)+1:m,yj+(α)+1:n|S(|s|+ 1) = α]

P [S(|s|+ 1) = α, x(i+(α)), y(j+(α))|xi, yj, s]

=


ps(|s|),M · p(x(i + 1), y(j + 1)) α = M

ps(|s|),X · q(x(i + 1)) α = X

ps(|s|),Y · q(y(j + 1)) α = Y

18

• Note that

p[xi+(α)+1:m,yj+(α)+1:n|S(|s|+ 1) = α] = bα(i+(α), j+(α))

• Finally,

p(s,x,y) = p(x1:i,y1:j, s)p(xi+1:m,yj+1:n|s)

= p(x1:i,y1:j, s)bs(|s|)(i, j)

Thus,

P [S(|s|+ 1) = α|x,y, s] =
bα(i+(α), j+(α))

bs(|s|)(i, j)

×


ps(|s|),M · p(x(i + 1), y(j + 1)) α = M

ps(|s|),X · q(x(i + 1)) α = X

ps(|s|),Y · q(y(j + 1)) α = Y

19

Posterior probability that xi is aligned to yj

• We can estimate the posterior probability that xi is aligned to yj by

posterior sampling of alignments

• but we can also compute it directly

. analogous to computing P (S(i) = k|x) for HMMs

• Let Xi � Yj denote the event Xi is aligned to Yj, then

P (X = x,Y = y, Xi � Yj) = P (X1:i = x1:i,Y 1:j = y1:j, S(τij) = M)

× P [Xi+1:m = xi+1:m,Y j+1:n = yj+1:n|S(τij) = M]

= fM(i, j)bM(i, j)

therefore

P (Xi � Yj|X = x,Y = y) =
fM(i, j)bM(i, j)

p(x,y)
=

fM(i, j)bM(i, j)
fE(m,n)

20

Optimizing for the “expected accuracy”

• An intuitively appealing measure of the accuracy of s is

A(s) =
∑

Mij∈s

p(xi � yj|x,y)

• A(s) is the expected overlap in M states between s and a

random alignment drawn according to the posterior distribution

• Finding a path s which maximizes A(s) is easy: let A(i, j) be the

optimal accuracy we can gain using only x1:i and y1:j

A(i, j) = max


A(i− 1, j − 1) + p(xi � yj|x,y)

A(i− 1, j)

A(i, j − 1)

21

Viterbi failure

• Can the Viterbi algorithm discriminate between data generated by the

following model vs. the random one?

• Maximizing the log-likelihood or llr is equivalent here

• If α4q(a)q(b)q(a)q(c) > 1 − α then pS(abac) > pB(abac) and the

Viterbi path will never visit state B

• Since state S is random, the Viterbi path cannot discriminate between

the model and random data

22

Viterbi failure - cont.

• However, if the data is long enough clearly the model is distinguishable

from random:

• fo(abac) → pM(abac) > pS(abac)
• so simply observing the frequency of abac should work for suffi-

ciently long sequences

• Maximizing the likelihood is not always the appropriate approach

• However, comparing pM(x) and pR(x) should discriminate the two

models

• as this is the optimal test and we just saw we can discriminate

• Bonus points: figure out Figure 4.8

