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What next?

• Blastn: sensitivity/specificity is controlled by seed length

• Setting specificity by the seed weight w we optimize sensitivity using

spaced seeds

• Possible further improvements:

• generalize the notion of a seed match

. for example allow a small number of mismatches
• use multiple seeds
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Multiple seeds

• Suppose πw is an optimal seed of weight w

• To further improve our sensitivity we can look for τw−1, an optimal

seed of weight w − 1

• Alternatively, we can consider two seeds of weight w and define a seed

hit as a match of any of them

• look for Ω = {ρw, ξw} that maximizes the sensitivity

• There is an overhead associated with using multiple seeds

• two dictionaries

• two scans of sequences

The temporal overhead can be significantly reduced by

• parallel machines/special hardware

• indexing the DB for Q-DB search
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Are two better than one?

• Specificity:

• the FP rate of Ω = {ρw, ξw} is ≈ 2 · 4−w

• as opposed to 4 · 4−w for τw−1

• Sensitivity:

w n # alignments found % improvement total seed matches
11 1 251941 – 1.57× 109

10 1 273831 8.7 5.88× 109

9 1 293670 16.6 1.72× 1010

11 2 279902 11.1 3.10× 109

11 3 292093 15.9 4.56× 109

11 4 298968 18.7 6.05× 109

11 5 303197 20.3 7.61× 109

Table 1: Sensitivity and specificity of optimized seeds and seed sets of weight w and size n in model Mnc. All
seeds had span ≤ 22. Sensitivity improvement is measured versus one optimized seed of weight 11.

sensitivity of seeds in coding DNA than does a stationary
model; a more comprehensive treatment of this phenomenon
appears in [3].

As before, we designed seed sets with weight 11 and span
at most 22, as well as single optimized seeds of weights
10 and 9, to optimize sensitivity in model Mc. The seed
sets are given in Figure 4. Table 2 shows the sensitivity of
these seed sets, again relative to a single optimized seed of
weight 11, and the total number of seed matches observed
in each experiment. While the overall magnitude of sensi-
tivity improvement was lower than in noncoding DNA for
both multi-seed designs and lower-weight seeds, the multi-
seed designs again showed sensitivity at least comparable to
that of single-seed designs producing considerably more false
positives. The total numbers of seed matches continue to in-
crease nearly linearly with the number of seeds, albeit with
a slope of about 0.6 rather than 1.0, suggesting that align-
ments of real coding DNA incur substantially more matches
by two or more seeds at the same location than those pro-
duced by the simple i.i.d. model of Section 2.1.

5. CONCLUSIONS
The design of multi-seed sets for nontraditional seeded

alignment technologies presents a computational challenge,
even compared to the already nontrivial problem of design-
ing single seeds, because the space of possible designs in-
creases exponentially with the set size. We have proposed
new methods to navigate this larger design space either by
dynamic programming or by Monte Carlo, obtaining signif-
icant improvements in computing time over the local search
scheme of [6]. The resulting seed sets, all of moderate size,
demonstrate markedly improved sensitivity on a large mam-
malian genomic DNA comparison, even relative to single
seeds that inspect fewer alignment positions. Our multi-
seed designs are good candidates for inclusion in indexing-
and hardware-based similarity search tools.

The ability to efficiently design simultaneous seeds raises
interesting possibilities for future improvements in seeded
alignment. One direction for improvement is combining op-
timized seeds for different types of alignments in a single set.
For example, seeds optimized to detect coding alignments
have a structure quite different from those trained on align-
ments of less rigidly organized noncoding DNA. Combining
both types of seed in a single set could improve sensitiv-
ity for both types of sequence. However, simply combining
separately derived optimized seeds will likely leave consid-
erable overlap between the similarities detected by each. A
better approach, which would yield more orthogonal seeds,
might be to design a single seed set using an appropriately
weighted mixture of models for all sequence types of interest.

{0, 1, 3, 4, 9, 10, 12, 13, 15, 16, 18}
{0, 1, 3, 4, 6, 7, 9, 10, 18, 19, 21}

{0, 1, 3, 4, 9, 10, 12, 13, 15, 16, 18}
{0, 1, 3, 4, 6, 7, 9, 10, 18, 19, 21}
{0, 1, 2, 3, 8, 9, 14, 15, 18, 20, 21}

{0, 1, 3, 4, 9, 10, 12, 13, 15, 16, 18}
{0, 1, 3, 4, 6, 7, 9, 10, 18, 19, 21}
{0, 1, 2, 3, 8, 9, 14, 15, 18, 20, 21}

{0, 1, 4, 10, 11, 12, 13, 16, 19, 20, 21}

{0, 1, 3, 4, 9, 10, 12, 13, 15, 16, 18}
{0, 1, 3, 4, 6, 7, 9, 10, 18, 19, 21}
{0, 1, 2, 3, 8, 9, 14, 15, 18, 20, 21}

{0, 1, 4, 10, 11, 12, 13, 16, 19, 20, 21}
{0, 1, 3, 4, 6, 7, 12, 13, 14, 16, 17}

Figure 4: Seed sets of sizes n = 2 through 5 for
coding DNA comparison. Each set of seeds was
obtained in an independent run of optimization, so
similarities between sets reflect convergence of dif-
ferent runs to the same local optimum.

A second application of multi-seed design is the exploita-
tion of the score matrix embeddings described in [5]. In
that work, we show that a score matrix M can be mapped
to a finite metric δ that embeds isometrically in Hamming
space, so that a random seed detects a match between the
embedded representations of two sequences with probabil-
ity proportional to their ungapped alignment score under
M . While incorporating score matrices into seeded align-
ment appears to improve the sensitivity of DNA similarity
search, our current implementation of this idea requires tens
to hundreds of random seeds. The present work raises the
possibility that a few carefully designed seeds for the em-
bedded representations of sequences might achieve the same
sensitivity at much reduced cost.

Finally, we plan to construct and evaluate alternative plat-
forms for seeded alignment that can take advantage of multi-
seed designs. An indexed search test bed could be built by,
e.g., modification of the existing code base for BLAT [12],
while hardware-based acceleration is a greater challenge that
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Finding optimal seeds - Sun & Buhler 04

• Mandala used an automaton to find the seed set sensitivity

• Local search was used to optimize the sensitivity

• Limited in practice to two seeds

• slow convergence

• sensitivity is recomputed from scratch at every step

• New ideas:

• Add seeds according to a greedy strategy

• beam search was also tried

. at each stage keep b best seeds

. keep N extensions of each of the previously b best
• Compute P (Eπ|Ec

Π)
. maximize over π reusing a significant chunk of the compu-

tation for a given Π


