What next?

- Blastn: sensitivity/specificity is controlled by seed length
- \bullet Setting specificity by the seed weight w we optimize sensitivity using spaced seeds
- Possible further improvements:
 - generalize the notion of a seed match
 - For example allow a small number of mismatches
 - use multiple seeds

Multiple seeds

- Suppose π_w is an optimal seed of weight w
- To further improve our sensitivity we can look for τ_{w-1} , an optimal seed of weight w-1
- \bullet Alternatively, we can consider two seeds of weight w and define a seed hit as a match of any of them
- look for $\Omega = \{\rho_w, \xi_w\}$ that maximizes the sensitivity
- There is an overhead associated with using multiple seeds
 - two dictionaries
 - two scans of sequences
 - The temporal overhead can be significantly reduced by
 - parallel machines/special hardware
 - indexing the DB for Q-DB search

Are two better than one?

- Specificity:
 - the FP rate of $\Omega = \{\rho_w, \xi_w\}$ is $\approx 2\cdot 4^{-w}$
 - as opposed to $4 \cdot 4^{-w}$ for τ_{w-1}
- Sensitivity:

w	n	# alignments found	% improvement	total seed matches
11	1	251941	—	1.57×10^{9}
10	1	273831	8.7	$5.88 imes 10^9$
9	1	293670	16.6	1.72×10^{10}
11	2	279902	11.1	3.10×10^{9}
11	3	292093	15.9	4.56×10^9
11	4	298968	18.7	$6.05 imes 10^9$
11	5	303197	20.3	7.61×10^{9}

Finding optimal seeds - Sun & Buhler 04

- Mandala used an automaton to find the seed set sensitivity
- Local search was used to optimize the sensitivity
- Limited in practice to two seeds
 - slow convergence
 - sensitivity is recomputed from scratch at every step
- New ideas:
 - Add seeds according to a greedy strategy
 - beam search was also tried
 - \triangleright at each stage keep b best seeds
 - \triangleright keep N extensions of each of the previously b best
 - Compute $P(E_{\pi}|E_{\Pi}^{c})$
 - \triangleright maximize over π reusing a significant chunk of the computation for a given Π