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Blastn’s seed length

• Recall: blastn’s seed match is of length w = 11, 12

• exact match

• w > 10 is compatible with the packing speedup

• a seed match is extended to a gapless alignment

• What is the significance of w?
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w controls the sensitivity

• The sensitivity of the seed is the precentage or “real alignments”

discovered

• The real alignments/similarities can come from a db of alignments

• or from a model

• We shall assume that the gapless extension never fails so w essentially

determines the sensitivity

• As w decreases the sensitivity increases

• as it is more likely that an aligned pair of sequences would contain

a perfect match of length w
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w effects the search speed

• Assuming an aggressive search (high sensitivity) the search speed is

largely determined by the number of random seed matches

• with each one triggering an extension attempt

• Let Aij = Aij(w) be the event: a match of length w starts at position

i of the first sequence and j of the second

• The expected number of random seed hits is:

E0

∑
ij

1Aij
=

∑
ij

E0(1Aij
) =

∑
ij

P0(Aij) ≈ mnP0(Aij) = mnρw ≈ mn

4w

• One can prove that ρ ≥ 4

• Thus, lowering w from 11 to 10 increases the expected number of

random matches by a factor of 4 (at least)
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PatternHunter - Ma, Tromp, Li (02)

• Human-mouse analysis (Waterstone et al., Nature 2002)

• Ma, Tromp and Li: a seed is a pattern of w matches

• Spaced seeds seem better:

• for the same weight w the sensitivity can increase

• For example, π = 111-1 designed to detect

• ...ACC?T...
...ACC?T...

is “typically” more sensitive than πc = 1111 which detects

• ...ACCT...
...ACCT...
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Why are spaced seeds better?

• Related to a problem studied by John Conway: which word are you

more likely to see first in a random text

• ABC or AAA?

• In any given position what is the probability of seeing ABC?

• 1/263

• What about AAA?

• The expected number of letters between consecutive occurrences of

ABC is 263 (renewal theory)

• Same for AAA

• Given this symmetry which word would you expect to see first ABC or

AAA?

• The correct answer is ABC
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Advantage spaced seeds

• Given w the expected number of random seed matches is identical for

all seeds of weight w

• therefore the running time is about the same

• A spaced seed would typically yield better sensitivity than blastn’s

contiguous w-mer

• Conversely, by choosing an optimal spaced seed of weight w + 1 we

can reduce the random hits (FP) by a factor of 4

• and attain a sensitivity ≥ sensitivity(πw
c ) (blastn’s contiguous

w-mer)

• Using db of real alignments, Buhler, K and Sun verified that an

optimally selected seed of weight 11 is more sensitive than π10
c

• NCBI’s BLAST server has over 105 queries/day
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Evaluating a seed

• A seed’s quality: weight vs. sensitivity

• Determine the sensitivity:

• experimentally: learn the sensitivity from a database of real

alignments

. computationally intensive
• parametrically: using a model

. can yield some insight on what makes some seeds better

. can lead to designing seeds rather than choosing ones
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Model of a similarity region

• Our similarity region models a gapless subsection of the alignment:

• no gaps

• fixed length, l, shorter than typical alignment region (64)

• Key step: translate the gapless alignment to a single “mismatch

string”:

• binary string S, where S(i) =

{
1 xi = yi

0 xi 6= yi

. For example,

TcgAaTCGtTACt
TatAcTCGgTACa
1001011101110

• We model S as k-th order Markov chain (k = 0, 1, . . . , 6)

• for coding region use a 3-periodic transition probabilities
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Seed’s sensitivity

• A seed is a pattern of 1s, corresponding to positions of identical letters

in the matched pair of words

• for example, π = 111-1

• π detects S if its patterns of 1s occurs in S

• For example, the similarity

. TcgAaTCGtTACt
TatAcTCGgTACa
1001011101110

. is detected by π = 111-1 but not by πc = 1111

• Sensitivity : P{π detects S}



10

Computing the seed’s sensitivity

• Simplified case: S is a sequence of iid Bernoulli random variables

• p = P (S[i] = 1)

• Given l = |S| and a seed π compute P (E) where E = {π detects S}

• Let s(π) be the span of the seed: w + # don’t care positions

• for π = 111-1, s(π) = 5

• Let Hn = Hn(π) = {π occurs at S[n : n + s− 1]}

• Then, P (E) = P (∪l−s+1
n=1 Hn)

• Clearly, P (Hi) = pw

• But the occurrences overlap

. Hn are not independent
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• Inclusion-Exclusion:

P (E) =
l−s+1∑
n=1

P (Hn)−
∑
i<j

P (Hi ∩Hj) + . . .
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Better techniques

• The combinatorics of the inclusion-exclusion formula are quite messy

• Use Guibas-Odlyzko overlap polynomials (1981): O(ls23(s−w))

• Ńıcodeme, Salvy, and Flajolet (1999): O(lw2s−w)

• Construct an automaton that accepts the strings that end with

the unique occurrence of π

. The states are prefixes of π

. Upon input x transition from state α to β: the longest

suffix of αx that is a prefix of π
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NSF’s automaton for π = 111-1
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Adding probability to the automaton

• The automaton is ignorant of the probability space

• A naturally associated Markov chain, X, can be defined on the states

of the automaton:

Pm(α, β) =

{
PS(x) there is an edge labeled x from α to β

0 otherwise

• By construction the probability of any automaton path starting from

∅ is the same as the probability of the corresponding substring
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Computing the sensitivity from the automaton

• Let T be the accepting state (absorbing, no transitions out)

• Claim: PS(E) = Pm(Xl = T |X1 = ∅)

• Proof.

• E = ∪iEi where the event

Ei = {S : 1st occurrence of π ends with S(i)}

• Partition each Ei to equivalence classes of strings according to

their prefix of length i

. each class corresponds to a distinct path of length i from ∅
to T

. the probability of the class is identical to that of the path
• Summing the probabilities of all classes completes the proof



16

Computing the chain’s probability

• Pm(Xl = T |X1 = ∅) = P l
m(∅, T )

• Let N = number of automaton/chain states

• N = O(w2s−w)

• For a general transition matrix P , computing P 2 generally requires

O(N3) steps

• We only need P l(a, b) for a particular a which generally requires

O(lN2)

• However, Pm is a sparse transition matrix:

• there are two transitions out of every state

• there are at most 2N non-vanishing entries in Pm

• Thus, we can compute P l
m(∅, T ) in O(lN) steps
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What about Markov strings?

• So far we assumed a Bernoulli mismatch string

• Will this scheme work for a Markov mismatch string?

• Key: probabilities of string and corresponding path should agree

• Suppose S is generated by a 2nd order Markov chain

• If we are at state “111” what is the probability of moving to

state “1110”?

. PS(0|11)
• If we are at state “∅” what is the probability of moving to state

“1”?

. depends on how we got to ∅

• The states at depth ≥ order of chain have sufficient memory

• We need to add memory to the “leaner” states
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Extension to Markov strings
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Finding Optimal Seeds

• Given a black box which computes the sensitivity find an optimal seed

for a given mismatch model and w

• Short sighted approach: local search strategy

• hill climbing

• Brute force approach: exhaustive enumeration for all s ≤ smax

• not feasible for the empirical sensitivity

• For example, finding the optimal seed with w = 11 and s ≤ 22 for a

Bernoulli model with l = 64, p = 0.7

• takes about 1 hour for exhaustive search on a 2.5GHz P4

• a local search yields approximate results in seconds

• By design: identify the salient features of good seeds
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Bernoulli sensitivity of optimal seed
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Mandala’s optimal seeds: non-coding

Seed Pattern P5(E) Found Time

×103 (mins)

πc {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 0.607 220 382

πc10 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 0.712 246 502

πph {0, 1, 2, 4, 7, 9, 12, 13, 15, 16, 17} 0.689 252 417

πN0 {0, 1, 2, 5, 7, 10, 11, 14, 16, 17, 18} 0.680 252 417

πN1 {01, 2, 3, 5, 8, 9, 12, 13, 14, 15} 0.699 252 423

πN2 {0, 1, 2, 3, 6, 8, 9, 10, 12, 13, 14} 0.707 253 424

πN3 {0, 1, 2, 3, 5, 6, 9, 11, 12, 13, 14} 0.704 252 422

πN4 {0, 1, 2, 4, 5, 6, 8, 11, 12, 13, 14} 0.707 253 425

πN5 {0, 1, 2, 3, 5, 6, 7, 10, 12, 13, 14} 0.709 253 424

Gapped alignments found and running times are on 500 megabases of

homologous noncoding regions from human and mouse.
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5-th vs. 0-th order Markov sensitivity
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Average detection probabilities of 1000 random seeds given by 0-th

(solid) and 5-order (dashed) Markov models. Error bars are 95% CI.
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Data generation

• Human-Mouse genomes from UCSC Genome Browser

• Extracted 1262 pairs (≈ 2.65× 109) annotated as syntenic regions

• orthologous regions with no major internal rearrangements

• Pairs were masked for repeats and low-complexity

• Divide into coding and non-coding regions (Twinscan predictions)

• Estimate 0-5th order non-coding Markov transition probabilities

• by Sampling ≈ 1.4 × 106 ungapped alignments of l = 64 and

70-75% identity from non-coding pairs

. higher identity rate: harder to distinguish seeds

. sampling stratgey is important

• Tested on 449 pairs of syntenic fragments (≈ 500× 106 unmasked)

• seed hits followed by BLAST’s ungapped followed by banded SW
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The Contiguous Seed πc

• What’s wrong with it?

• Going back to Conway’s problem: why should we wait longer for AAA
than for ABC?

• The average interarrival times (letters between occurrences) is the

same for AAA and ABC

• Occurrences of AAA have certain tendency to cluster

• Occurrences of ABC cannot cluster

• Therefore interarrival times between clusters of AAA are typically longer

• More likely to see ABC before AAA
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Analogy

• Arriving at a random time to a train station, which train line are we

more likely to see departing first:

• one that has 5 trains departing one per minute for the first 5

minutes after the hour

• or one that has 5 trains departing at 12-minute intervals?
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Shall we rule out πc?

• What happens if l = w?

• Due to its compactness, in some (pathological) cases πc is the

optimal seed

• Another example is when p is sufficiently small

• Proof: inclusion-exclusion

Moreover, there are seeds that will always be worse

Claim 1. If π is an arithmetic progression with d > 1, e.g. π =
{0, 2, 4 . . . }, then P (π ∈ S(1 : l)) < P (πc ∈ S(1 : l))

• However, if we “level the playing field” then

Claim 2.

P (π ∈ S(1 : l + s− w)) > P (πc ∈ S(1 : l))
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Asymptotic sensitivity

• The last claim somewhat goes out on a limb but

• There exists λ = λ(π) ∈ [0, 1] and β = β(π) > 0 s.t.

P (π /∈ S(1 : l)) ∼ βλl

• λ is the maximal eigenvalue of the automaton transition matrix

• Corollary: λ(πc) ≥ λ(π)

• Proof:

1 <
P (πc /∈ S(1 : l))

P (π /∈ S(1 : l + s− w))
∼ β(πc)λ(πc)

l

β(π)λ(π)l+s−w

=⇒ β(πc)
β(π)λ(π)s−w lim

l→∞

[
λ(πc)
λ(π)

]l

≥ 1,

which proves the claim
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Asymptotic sensitivity - cont.

• Even one space can lead to better asymptotical result

• Let π =111...1-1 and πc be of weight w ≥ 2

Claim 3. λ(πc) > λ(π)

• Example: if w ≥ 4 then for l = w + 3 and p > 1/2,

P (π ∈ S(1 : l)) > P (πc ∈ S(1 : l))

• Conjecture: all non-periodic spaced seeds satisfy λ < λ(πc)
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Asymptotically optimal seeds

• Studying asymptotically optimal seeds elucidates structure

• The following seeds seem to be asymptotically optimal

• w = 3: {0, 1, 3}
• w = 4: {0, 1, 4, 6}
• w = 5: {0, 3, 4, 9, 11}
• w = 6: {0, 1, 8, 11, 13, 17}
• w = 7: {0, 2, 3, 10, 16, 21, 25}

. last one took a month of CPU time

• What’s the rule?
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Golomb rulers

• Every positive difference appears exactly once

• Minimal span with this property

• From James Shearer’s home page (IBM) a minimal Golomb ruler of

w = 11 (marks):

• {0, 1, 4, 13, 28, 33, 47, 54, 64, 70, 72}
• Demonstratively more sensitive for long sequences than the pre-

viously known optimal seed

• How was this determined?

. 2s−w is too big: can’t build automaton

. Take large l (700)

. Draw random mismatch strings of length l

. Check in how many of those does the seed occurs

. Obtain a high confidence interval for P (πG ∈ S(1 : l))
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Golomb rulers and optimal seeds

• The contiguous seed is in some sense the worst

• it suffers from heavy dependencies between adjacent occurrences

• Hypothetically independent occurrences provide optimal sensitivity

• more precisely, yields an upper bound on sensitivity

• Golomb rulers represent minimal possible overlap (at most 1 in each

shift)

• best approximtion of independence given that you cannot avoid

the overlap

• Open questions:

• Can this be proved (independently of p)?

• If there are multiple optimal Golomb rulers which one is the

asymptotically optimal seed?


