
1

String comparison problems, Myers (91)

• So far our goal was to maximize the alignment’s similarity score

• Dual perspective: minimize the distance

• Intuitively: look for a minimal “number” of evolutionary operations

(substitution,deletion,insertion) that would transform one sequence

into the other

• Define D(x, y) := minimal cost to transform x to y

• Generalized-Levenshtein distance

• In case of the Levenshtein (edit) distance δ(a, b) = 1a6=b, where

a, b ∈ Σ ∪ {−}

• Dual problem: longest common subsequence of x and y: xki
= yli

• These problems arise in comparing contents of files and correcting

spelling errors



2

String comparison problems (cont.)

• The 0-1 nature of the cost function allows some improvements

• Masek and Paterson (1980): subquadratic O(mn/ log2 n) (wlog n ≥
m)

• Ukkonen (85) and Myers (86): O(DN) where D = D(x, y)

• The more similar are the sequences the faster it runs

• D can be O(m + n)
• Myers: the algorithm “expected” running time is O(N + D2)



3

Approximate string matching

• Given a query pattern, a db, a scoring scheme and a threshold look for

all words in the db that lie within the threshold distance to the query

• For example, the scoring is the edit distance

• Use an m × L (virtual) alignment cost table, where m is the size of

the query and L is the db

• Based on Fickett (84): compute column by column going as deep as

the previous column or the threshold

• If the text is “random” O(DL) where D is the threshold



4

Searching for alignments against large databases

• Given that a guaranteed alignment costs O(nm) it is impractical for

frequent large db searches

• The two most popular heuristic tools are FASTA (88) and BLAST

(90)

• Both try to rapidly locate promising starting points

• In the process the optimal alignment might get lost



5

Basic Local Alignment Search Tool

• First version of BLAST was written by Altschul, Gish, Miller, Myers

and Lipman (90)

• A second version by Altschul et al. (97)

• There are many flavors of BLAST:

• BLAST or blastp (AA query - AA db)

• blastn (DNA query - DNA db)

• blastx (DNA query - AA db: translate query in all 6 reading

frames)

• tblastn (AA query - DNA db: translate db in all 6 reading frames)

• tblastx (DNA query - DNA db: translate query and db in all 6

reading frames)

• blastp and blastn are essentially the only two “real” variations



6

BLAST (cont.)

• BLAST1 was designed to find either a Maximal Segment Pair, a

maximally scored local ungapped alignment

• or a list of High-scoring Segment Pairs

• Finding a combination of HSPs was a surrogate for doing a gapped

alignment

• The main idea of BLAST is that a high scoring alignment should

contain a high scoring aligned pair of words

• BLAST1 rapidly scans the db for an aligned pair of words (of fixed

length w) that scores above a threshold T

• Any such word pair encountered (hit) is extended to an ungapped

alignment which is recorded if it scores above S0

• the expected number of random HSPs scoring above S0 is about 10



7

All you wanted to know about BLAST (I)

• BLAST has 3 steps:

• Given the query compile a list of all high scoring words:

. let αi denote the ith word of the query, then

L :=
⋃
i

{β ∈ Σw : S(β, αi) ≥ T}︸ ︷︷ ︸
NT (αi) := T neighborhood of αi

. How big/small can NT (αi) be?

. typically 50 (w = 4, T = 16, PAM120)

. Build an automaton that accepts the language L

. Accepts on transition (Mealy) as opposed to accepts on

states (Moore)
• Using the automaton scan the db

. Hash tables turned out to be slower



8

• Extend hits (aligned pair of words scoring above T )

. Extension is attempted on both ends

. Using “X dropoff” strategy: extend till the score drops by

more than X from the best score observed so far

. Dropoff parameter is “-y” (AA default 3, DNA is 11)

. Over 90% of the execution time is spent at this step

. An X-dropoff version of Smith-Waterman was tested but

rejected as too costly for the marginal added sensitivity



9

blastn

• In blastn L = ∪iαi and w = 11, 12

• Preprocessing: db is compressed by packing 4 nucleotides per byte

• If w ≥ 11 then any hit would necessarily have an 8-mer that lies on a

byte boundary

• The db is scanned byte-wise for hits of length two bytes

• What do we need to do with L?

• Special problems with DNA: locally biased base composition, repeats

• During the packing of the db, words that are significantly over-

represented are stored for future filtering

• Before scanning the db repeat elements are removed from the query



10

All you wanted to know about BLAST (II)

• Bottom line: “gapped BLAST” that is 3× faster than blastp. How?

• Over 90% of the time blastp spends in extending seeds

• HSPs are usually longer than a single word pair

• Multiple word pairs can typically be detected in an HSP

• Therefore require two consistent hits (same diagnoal) to start an

extension:

• Two non-overlapping word pairs, each scoring above T

• that lie at a distance of ∆ ≤ A

• ∆ is the same for both sequences

• T by itself will decrease: more single word pair hits but fewer extensions

as most of those will not form a consistent pair



11

sensitivity of two- vs. one-hit

HSPs were simulated using BLOSUM62,AA frequency from Robinson

and Robinson (91),105 per nominal score 37-92



12

two- vs. one-hit example

15 hits ≥ 13 (’+’),additional 22 hits ≥ 11 (’.’),A = 40



13

Implementing the two-hit strategy

• The diagonal of a word pair that starts at (x1, x2) (db,query) is x1−x2

• For each diagonal d, record x1 of the last word pair that scores above

T with d = x1 − x2

• When while scanning the db a new word pair hit is found at (x′
1, x

′
2)

check if the recorded x1 under d = x′
1 − x′

2 satisfies x′
1 − x1 ≤ A

• Note that x′
1 > x1

• Do we really need an array of the size of the db?

• An array of size 3A would do (mod d)



14

Gain of the two-hit strategy

• Claim(?): using BLOSUM62, the R&R marginals, w = 3, T1 = 13,

T2 = 11 and A = 40, on average there are about

• 3.2 more single word hits using T2

• 7.14 more one-hit extensions than two-hit ones

• It is 9 times faster to test for a gapless extension than to do it

• Corollary: two-hits seed extension is about twice as fast on average

• How can we justify the claim?

• MC simulation, or analytic

. we have the distribution of S(a, b) under H0

. find the distribution of S(α, β) (words of length w = 3)

. find the probability of having two hits within A = 40
positions



15

Gapped alignments

• With BLAST1 people would often set T much lower than needed for

the probability of missing an HSP to be at most, say, 0.04

• The main reason was that BLAST1 would detect significant gapped

alignments by fidning its HSPs

• Solution: perform X-dropoff (“-X, AA default 15”) gapped extension

on selected few HSPs

• An HSP with score ≥ Sg is subjected to gapped extension

• Sg is set so that such extension will occur once in about 50 db

sequences

It is important to choose a reasonably good initially aligned seed

• Choose the central residue pair in an optimally scored segment

of length 11



16

dropoff gapped extension



17

dropoff gapped extension - the alignment



18

deadend gapped extension


