Accepted Point Mutation (Dayhoff et al. 68,72,78)

- "An APM in a protein is a replacement of one AA by another accepted by evolution"
- We want to estimate the
 - probability that given a site with AA A has udergone an APM, the new AA is ${\cal B}$
 - the rates each AA undergoes an APM
- Dayhoff et al. estimated those from hypothetically constructed phylogenetic trees
 - originally phylogenetic trees were used to represent evolutionary relationship between species
 - they can be used to represent relationship between sequences
 - trees relating the sequences in 71 families were constructed using the *parsimony* method

The parsimony method for phylogenetic trees

- Look for a tree that can relate the observed sequences with a minimal number of substitutions
 - typically it is not unique
- An example of the most parsimonuous phylogenetic trees for the family of sequences AA, AB, BB:

Estimating transition probabilities from trees

- The transition frequencies were estimated from the neighboring sequences on the phylogenetic trees:
 - If A and B are aligned in two nodes of the tree connected by and edge then the $A \to B$ and the $B \to A$ counts are incremented
 - Within each of the 71 families the counts are averaged over all possible most parsimonuous trees
- The 71 families considered had the property that any pair of sequences in them agreed in $\geq 85\%$ of the sequences
 - This restriction hopefully reduced to negligible the number of edges along which two APMs occurred in the same site
- Dividing those counts by the total number of times A mutated yields an estimate of the conditional probability that A mutated to B given that it mutated

Counted transitions (× 10)

A	Ala																				
R	Arg	30																			
N	Asn	109	17												•						
D	Asp	154	0	532																	
С	Cys	33	10	0	0									ne.							
Q	Gln	93	120	50	76	0															
Ε	Glu	266	0	94	831	0	422														
G	G1 y	579	10	156	162	10	30	112													
Н	His	21	103	226	43	10	243	23	10												
I	Ile	66	30	36	13	17	8	35	0	3											
L	Leu	95	17	37	0	0	75	15	17	40	253										
к	Lys	57	477	322	85	0	147	104	60	23	43	39									
м	Met	29	17	0	0	0	20	7	7	0	57	207	90								
F	Phe	20	7	7	0	0	0	0	17	20	90	167	0	17		l					
Ρ	Pro	345	67	27	10	10	93	40	49	50	7	43	43	4	7						
S	Ser	772	137	432	98	117	47	86	450	26	20	32	168	20	40	269					
Ť	Thr	590	20	169	57	10	37	31	50	14	129	52	200	28	10	73	696		1		
W	Trp	0	27	3	0	0	0	0	0	3	0	13	0	0	10	0	17	0		1	
Y	Tyr	20	3	36	0	30	0	10	0	40	13	23	10	0	260	0	22	23	6	┼	
٧	Val	365	20	13	17	33	27	37	97	30	661	303	17	77	10	50	43	186	0	17	
		A	R	N	D	C	Q	E	G	Н	I	L	К	М	F	Р	S	Ť	W	Y	
		Ala	Arg	Asn	Asp	Cys	Gln	Glu	G1 y	His	Ile	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val

Estimating the "mutability" from trees

- Dayhoff et al. estimated the rates at which an AA undergoes mutation by dividing the number of times it mutated by the number of times at appears in the phylogenetic trees
- They define the Markov chain transition matrix:

$$p_{AB} = m_A \frac{T_{AB}}{\sum_{C \neq A} T_{AC}}$$

Transition matrix for PAM1 ($\times 10^4$)

ORIGINAL AMINO /

				_				_				_	_
			A	R	N	D	С	Q	Ε	G	Н	I	L
			Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	Ile	Leu
	Α	A1 a	9867	2	9	10	3	8	17	21	2	6	4
	R	Arg	1	9913	1	0	1	10	0	0	10	3	1
	N	Asn	4	1	9822	36	0	4	6	6	21	3	1
	D	Asp	6	0	42	9859	0	6	53	6	4	1	0
	С	Cys	1	1	0	0	9973	0	0	0	1	1	0
	Q	Gln	3	9	4	5	0	9876	27	1	23	1	3
	Ε	G1 u	10	0	7	56	0	35	9865	4	2	3	1
Π	G	Gly	21	1	12	11	1	3	7	9935	1	0	1
IO AC	Н	His	1	8	18	3	1	20	1	0	9912	0	1
AMIA	I	Ile	2	2	3	1	2	1	2	0	0	9872	9
1 ENT	L	Leu	3	1	3	0	0	6	1	1	4	22	9947

PAM*X* vs. % identity

Observed Percent Difference	Evolutionary Distance in PAMs
1	1
5	5
10	11
15	17
20	23
25	30
30	38
35	47
40	56
45	67
50	80
55	94
60	112
65	133
70	159
75	195
80	246
85	328

PAM 160 vs. BLOSUM 62

F 2 С S Т Ρ G Ν D 2 E 1 Q 2 Η R Κ Μ I 1 L V Y W Α 4 5 1 -2 2 1 0 0 2 5 -1 0 1 0 1 С 0 0 -1 0 1 0 2 0 -2 0 0 0 1 0 1 -1 1 1 -1 S 2 -1 -1 -1 0 0 0 0 -1 0 -1 1 0 1 3 0 1 9 0 Т С 0 1 -1 0 2 1 2 -2 -1 0 -1 -1 -1 1 0 Ρ -1 0 S -1 4 0 1 1 1 1 2 2 -1 -2 -2 -1 0 1 0 0 0 Α Т -1 5 1 0 -1 2 G -1 0 -1 1 4 2 -2 1 1 0 0 Ρ -3 -1 -1 7 0 1 0 -1 -1 0 3 -1 0 2 2 1 0 N -1 0 0 -1 0 1 0 -1 Α 0 4 0 -1 2 2 1 G -3 2 -1 -1 -1 0 0 0 0 3 D 0 -2 -2 0 6 2 0 0 0 -2 1 2 1 -1 0 4 E -2 0 Ν -3 0 -2 0 6 1 1 1 -1 3 3 Q 0 0 0 -2 1 6 -3 0 -1 -1 -1 D -1 2 1 -1 2 2 H 0 2 -1 0 1 0 0 -2 5 E -4 0 -1 -1 -1 1 3 -1 -1 -2 0 0 2 -1 -1 1 0 -4 R 0 -1 5 0 0 -3 2 1 -1 -2 -1 1 3 -2 -2 0 0 8 1 1 1 K -2 -3 Η -1 0 1 -2 0 -2 0 5 -2 -1 -1 0 1 2 4 M -3 -2 -1 R 0 -1 1 1 -1 2 5 -1 0 0 1 3 I 1 -2 -3 ĸ 0 -1 5 -3 -1 2 L -2 -2 -1 -1 0 1 0 -1 -3 -2 Μ -2 1 2 -3 -3 0 1 4 V -3 -3 -3 -3 4 Т 2 2 -2 -2 -1 1 F -3 -2 4 -3 -2 -3 T. 1 3 1 -1 -3 -3 -2 4 2 Y -2 0 -2 0 -3 -3 -2 -2 V 0 0 -1 W -3 -3 0 -1 -2 -2 -3 -3 -3 -3 -3 -1 6 -2 -4 F -2 2 -2 -2 -1 -1 -1 -1 3 7 -2 -2 -2 -3 -2 -3 -2 -1 -2 -3 Y -2 -3 -3 -3 -2 -3 1 2 11 -3 -2 -1 -2 -2 -3 -3 -2 -4 W -4 -4 \mathbf{L} V Y W S Η R Κ Μ Ι F С Ρ Α G Ν D Ε Q Т