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Accepted Point Mutation (Dayhoff et al. 68,72,78)

• “An APM in a protein is a replacement of one AA by another accepted

by evolution”

• We want to estimate the

• probability that given a site with AA A has udergone an APM,

the new AA is B

• the rates each AA undergoes an APM

• Dayhoff et al. estimated those from hypothetically constructed phylo-

genetic trees

• originally phylogenetic trees were used to represent evolutionary

relationship between species

• they can be used to represent relationship between sequences

• trees relating the sequences in 71 families were constructed using

the parsimony method
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The parsimony method for phylogenetic trees

• Look for a tree that can relate the observed sequences with a minimal

number of substitutions

• typically it is not unique

• An example of the most parsimonuous phylogenetic trees for the family

of sequences AA, AB, BB:
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Estimating transition probabilities from trees

• The transition frequencies were estimated from the neighboring se-

quences on the phylogenetic trees:

• If A and B are aligned in two nodes of the tree connected by and

edge then the A → B and the B → A counts are incremented

• Within each of the 71 families the counts are averaged over all

possible most parsimonuous trees

• The 71 families considered had the property that any pair of sequences

in them agreed in ≥ 85% of the sequences

• This restriction hopefully reduced to negligible the number of

edges along which two APMs occurred in the same site

• Dividing those counts by the total number of times A mutated yields

an estimate of the conditional probability that A mutated to B given

that it mutated
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Counted transitions (× 10)
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Estimating the “mutability” from trees

• Dayhoff et al. estimated the rates at which an AA undergoes mutation

by dividing the number of times it mutated by the number of times at

appears in the phylogenetic trees

• They define the Markov chain transition matrix:

pAB = mA
TAB∑

C 6=A TAC



6

Transition matrix for PAM1 (×104)
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PAMX vs. % identity
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PAM 160 vs. BLOSUM 62
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mation of mutation rates. Nevertheless, the BLOSUM series
based on percent clustering ofaligned segments in blocks can
be compared to the Dayhoff matrices based on PAM using a
measure of average information per residue pair in bit units
called relative entropy (9). Relative entropy is 0 when the
target (or observed) distribution of pair frequencies is the
same as the background (or expected) distribution and in-
creases as these two distributions become more distinguish-
able. Relative entropy was used by Altschul (9) to charac-
terize the Dayhoff matrices, which show a decrease with
increasing PAM. For the BLOSUM series, relative entropy
increases nearly linearly with increasing clustering percent-
age (Fig. 1). Based on relative entropy, the PAM 250 matrix
is comparable to BLOSUM 45 with relative entropy of =0.4 bit,
while PAM 120 is comparable to BLOSUM 80 with relative
entropy of =1 bit. BLOSUM 62 (Fig. 2 Lower) is intermediate
in both clustering percentage and relative entropy (0.7 bit)
and is comparable to PAM 160. Matrices with comparable
relative entropies also have similar expected scores.
Some consistent differences are seen when PAM 160 is

subtracted from BLOSUM 62 for every matrix entry (Fig. 2
Upper). Compared to PAM 160, BLOSUM 62 is less tolerant to
substitutions involving hydrophilic amino acids, while it is
more tolerant to substitutions involving hydrophobic amino
acids. For rare amino acids, especially cysteine and tryp-
tophan, BLOSUM 62 is typically more tolerant to mismatches
than is PAM 160.
Performance in Multiple Alignment of Known Structures.

One test of sequence alignment accuracy is to compare the
results obtained to alignments seen in three-dimensional
structures. Lipman et al. (21) applied a simultaneous multiple
alignment program, MSA, to 3 similarly diverged serine pro-
teases of known three-dimensional structures. They found
that for 161 closely aligned residue positions, 12 residues
were involved in misalignments. We asked how well a
hierarchical multiple alignment program, MULTALIN (17),
performs on the same proteins using different substitution
matrices. Table 1 shows that MULTALIN performs much
worse than MSA using the PAM 120, 160, or 250 matrices,
misaligning residues at 30-31 positions. In comparison, MUL-
TALIN with a simple +6/-i matrix (that assigns +6 to
matches and -1 to mismatches) misaligns residues at 34
positions. In the same test using BLOSUM 45, 62 and 80,
MULTALIN misaligned residues at only 6-9 positions. Com-

Table 1. Performance of substitution matrices in aligning three
serine proteases

Matrix Residue positions missed*
aligned Program All positions Side chains

MSA 12 6
PAM 120 MULTALIN 31 22
PAM 160 MULTALIN 30 22
PAM 250 MULTALIN 30 22
+6/-i MULTALIN 34 26
BLOSUM 45 MULTALIN 9 5
BLOSUM 62 MULTALIN 6 4
BLOSUM 80 MULTALIN 9 6

*From data of Greer (22), where residues were considered to be
aligned whenever a-carbons occupied comparable positions in
space (All positions column). For a subset (Side chains column),
residues were excluded where there were differences in the posi-
tions of side chains.

parable numbers were obtained when residues that show
differences in the positions of side chains were excluded.
Therefore, BLOSUM matrices produced accurate global align-
ments of these sequences.
Performance in Searching for Homology in Sequence Data

Banks. To determine how BLOSUM matrices perform in data
bank searches, we first tested them on the guanine nucleo-
tide-binding protein-coupled receptors, a particularly chal-
lenging group that has been used previously to test searching
and alignment programs (10, 18, 23, 24). Three diverse
queries, LSHR$RAT, RTA$RAT, and UL33$HCMVA,
were chosen from among the 114 full-length family members
catalogued in Prosite based on the observation that none
detected either of the others in searches. The number of
misses was averaged in order to assess the overall searching
performance of different matrices for this group. Three
different programs were used-BLAST (11), FASTA (19), and
Smith-Waterman (20). BLAST rapidly determines the best
ungapped alignments in a data bank. FASTA is a heuristic and
Smith-Waterman is a rigorous local alignment program; both
can optimize an alignment by the introduction of gaps.
Several BLOSUM and PAM matrices in the entropy range of
0.15-1.2 were tested.

Results with each of the 3 programs show that all BLOSUM
matrices in the 0.3-0.8 range performed better than the best

C S T P A G N D E Q H R K M I L
0 -1 1 0 2 1 1 2 1 2 0 0 2 4 1 5

2 0 -2 0 -1 0 0 0 1 0 0 0 1 0 1
C 9 2-1 -1 -1 0 0 0 0 0 0-1 0-1 1
S-1 4 2-2 -1 -1 0 0-1 -1-1 1 1 0-1
T-1 1 5 2-1 -2 -2 -1 0 0 1 1 0 0 1
P -3 -1-1 7 2 0 -1 -2 0 1 1 0 0-1 0
A 0 1 0-1 4 3 -1 -1 0 0 1-1 0-1 0
G -3 0-2 -2 0 6 2 -1 -1 -1 0-1 0 0 0
N -3 1 0-2 -2 0 6 1 0 0 2 2 1-1 0
D -3 0-1 -1 -2 -1 1 6 0-2 0 1 1-1 0
E -4 0-1 -1 -1 -2 0 2 5 2-1 0 1 0-1
Q -3 0-1 -1 -1 -2 0 0 2 5 -1-1 0-1 1
H -3 -1 -2 -2 -2 -2 1-1 0 0 8 1-2 -1 1
R -3 -1 -1 -2 -1 -2 0-2 0 1 0 5 -2 -1 -1
K -3 0-1 -1 -1 -20-11 1-1 2 5 -1 1
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0-2 -1 -1 5 -1
I -1 -2 -1 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4
L -1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4
V -1 -2 0-2 0-3 -3 -3 -2 -2 -3 -3 -2 1 3 1
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1
W -2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2
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FIG. 2. BLOSUM 62 substitution matrix (Lower) and difference matrix (Upper) obtained by subtracting the PAM 160 matrix position by position.
These matrices have identical relative entropies (0.70); the expected value of BLOSUM 62 is -0.52; that for PAM 160 is -0.57.
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