Cluster percentage and AA pair count

BLOSUM62

C 9 S -1 4 Т -1 1 5 P -3 -1 -1 7 A 0 1 0 - 1 4 G -3 0 -2 -2 0 6 -3 1 0 -2 -2 0 6 Ν D -3 0 -1 -1 -2 -1 1 6 Е Q Η R -3 0 -1 -1 -1 -2 0 -1 1 1 -1 2 5 К -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1M 5 Ι 4 -3 -2 -3 -2 -2 2 2 L -1 $-\mathbf{Z}$ -1 -4 -3 -4 -34 3 1 4 1 V -1 -2 0 -2 0 -3 -3 -3 -2 -2 -3 -3 -20 0 0 - 1 F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -36 Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7 -2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -31 2 11 \mathbf{C} \mathbf{S} Τ L Т P A G N D E \mathbf{Q} H R к M V F Y W

The origin of the **BLOCKS**

- The aligned (gapless) blocks come from
 - . . . alignning sequences
 - for which we need a scoring matrix . . .
- $\bullet~2\times$ Henikoff used an iterative approach to circumvent this circular reasonning.

Generating blocks using PROTOMAT

- Input is a group of related proteins
- For each group the program MOTIF (Smith, Annau, Chandrasegaran 87) linearly scans for motifs of the form $A_1 d_1 A_2 d_2 A_3$
 - Overrepresented motifs are determined by a Poisson approximation ($\lambda = nlP_{A_1}P_{A_2}P_{A_3}$) and a user selected significance level
 - The ungapped alignments (blocks) containing the significant motifs are pruned (combining shorter motifs to longer ones)
 - Each surviving block is scored by sum of pairs in each (positively scored) column using a user defined similarity matrix
 - Each block is used to (re)align the group to itself
- The top 50 blocks are extended and merged if possible
- Statistical significance is determined by shuffling the sequences

Group's block assembly in PROTOMAT

- We now have a set of blocks "overlapping in different ways in various subsets of sequences"
- Want to find a best path of nonoverlapping blocks which would serve as a signature for this group
 - Construct a directed graph whose vertices are the blocks
 - Draw a directed edge from block a to b if a fully precedes b in at least x of the sequences ($x \ge \max(n/2, m)$ where m is the MOTIF significance level?)
 - Each vertex has a score: block score \times number of merged motifs
 - Path score is the sum of vertex score times the proportion of sequences in the path.
 - Using DFS (acyclic why?) score each path and choose best path
- The blocks from the best scoring path are recorded

Using PROTOMAT to construct the BLOCKS

- Raw data included 504 nonredundant groups of proteins from Prosite 8.0
- Using a 0-1 scoring matrix PROTOMAT generates 2205 blocks
- These are used to create a scoring matrix a-la BLOSUM60
- Rerun PROTOMAT with the new scoring matrix to generate 1961 blocks
- Create a new "BLOSUM60" matrix from these
- Use this matrix in PROTOMAT on 559 groups of Prosite 9.0 to generate 2106 blocks (3-60 wide and 2-200+ deep)
- Generate the full range of BLOSUMX matrices.

Markov chains

 A stochastic process X_n, n = 1, 2, ... (each X_n is a random variable) is a Markov chain if

$$P(X_n = j | X_1 = i_1, \dots, X_{n-1} = i_{n-1}) = P(X_n = j | X_{n-1} = i_{n-1})$$

- The state space or simply the states of the chain are all js for which the above is positive for *some* choice of i_k s
- The chain is homogenuous if the transition matrix $P = (p_{ij})$ is independent of n

$$P(X_n = j | X_{n-1} = i) = p_{ij}$$

• Let $P_n(i, j) = P(X_n = j | X_1 = i)$ then,

$$P_{n}(i,j) = \sum_{k} P(X_{n} = j, X_{n-1} = k | X_{1} = i)$$

= $\sum_{k} P(X_{n} = j | X_{n-1} = k, X_{1} = i) P(X_{n-1} = k | X_{1} = i)$
= $\sum_{k} P(X_{n} = j | X_{n-1} = k) P_{n-1}(i,k)$
= $\sum_{k} p_{kj} P_{n-1}(i,k)$

• i.e. $P_n = P_{n-1}P$ and by induction $P_n = P^n$

• Chapman-Kolmogorov equation

Stationary distribution

- A chain is irreducible if for states i, j there exists n s.t. $P_n(i, j) > 0$
- If $X_1 \sim q$ where q is a probability vector then $X_2 \sim \mu = qP$:

$$\mu_j := P(X_2 = j) = \sum_i P(X_2 = j | X_1 = i) P(X_1 = i) = \sum_i p_{ij} q_i$$

• more generally,
$$X_n \sim {oldsymbol q} P^{n-1}$$

- A probability vector π is a stationary or invariant probability vector of the chain (P) if $\pi P = \pi$
- Steady state: if $X_1 \sim \pi$ then so is $X_n \ \forall n$
- An irreducible homogenuous Markov chain has a unique stationary distribution π
- Moreover, for any probability vector \boldsymbol{q} , $\lim_n \boldsymbol{q} P^n = \boldsymbol{\pi}$

Accepted Point Mutation (Dayhoff et al. 68,72,78)

- "An APM in a protein is a replacement of one AA by another accepted by evolution"
- We want to estimate the
 - probability that given a site with AA A has udergone an APM, the new AA is ${\cal B}$
 - the rates each AA undergoes an APM
- Dayhoff et al. estimated those from hypothetically constructed phylogenetic trees
 - originally phylogenetic trees were used to represent evolutionary relationship between species
 - they can be used to represent relationship between sequences
 - trees relating the sequences in 71 families were constructed using the *parsimony* method