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Cluster percentage and AA pair count
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BLOSUM (blocks substitution matrix) matrices in half-bit
units, comparable to matrices generated by the PAM (percent
accepted mutation) program (11). For each substitution ma-
trix, we calculated the average mutual information (12) per
amino acid pair H (also called relative entropy), and the
expected score E in bit units as

20 i
H = qijxsij;i=1 j=1

20 i
E= E Pixpj x si.

i=1 j=1

Clustering Segments Within Blocks. To reduce multiple
contributions to amino acid pair frequencies from the most
closely related members of a family, sequences are clustered
within blocks and each cluster is weighted as a single se-
quence in counting pairs (13). This is done by specifying a
clustering percentage in which sequence segments that are
identical for at least that percentage of amino acids are
grouped together. For example, if the percentage is set at
80%, and sequence segment A is identical to sequence
segment B at .80%o of their aligned positions, then A and B
are clustered and their contributions are averaged in calcu-
lating pair frequencies. If C is identical to either A or B at
.80%o of aligned positions, it is also clustered with them and
the contributions of A, B, and C are averaged, even though
C might not be identical to both A and B at -80%o of aligned
positions. In the above example, if 8 of the 9 sequences with
A residues in the 9A-1S column are clustered, then the
contribution of this column to the frequency table is equiv-
alent to that of a 2A-1S column, which contributes 2 AS
pairs. A consequence of clustering is that the contribution of
closely related segments to the frequency table is reduced (or
eliminated when an entire block is clustered, since this is
equivalent to a single sequence in which no substitutions
appear). For example, clustering at 62% reduces the number
ofblocks contributing to the table by 25%, with the remainder
contributing 1.25 million pairs (including fractional pairs),
whereas without clustering, >15 million pairs are counted
(Fig. 1). In this way, varying the clustering percentage leads
to a family of matrices. The matrix derived from a data base
of blocks in which sequence segments that are identical at
.80%o of aligned residues are clustered is referred to as
BLOSUM 80, and so forth. The BLOSUM program implements
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FIG. 1. Relationship between percentage clustering and total
amino acid pair counts plotted on a logarithmic scale and relative
entropy.

matrix construction. Frequency tables, matrices, and pro-
grams for UNIX and DOs machines are available over Internet
by anonymous ftp (sparky.fhcrc.org).

Constructing Blocks Data Bases. For this work, we began
with versions of the blocks data base constructed by PROTO-
MAT (10) from 504 nonredundant groups of proteins cata-
logued in Prosite 8.0 (14) keyed to Swiss-Prot 20 (15).
PROTOMAT employs an amino acid substitution matrix at two
distinct phases of block construction (16). The MOTIF pro-
gram uses a substitution matrix when individual sequences
are aligned or realigned against sequence segments contain-
ing a candidate motif (16). The MOTOMAT program uses a
substitution matrix when a block is extended to either side of
the motif region and when scoring candidate blocks (10). A
unitary substitution matrix (matches = 1; mismatches = 0)
was used initially, generating 2205 blocks. Next, the BLOSUM
program was applied to this data base of blocks, clustering at
60%o, and the resulting matrix was used with PROTOMAT to
construct a second data base consisting of 1961 blocks. The
BLOSUM program was then applied to this second data base,
clustering at 60%. This matrix was used to construct version
5.0 of the BLOCKS data base from 559 groups in Prosite 9.00
keyed to Swiss-Prot 22. The BLOSUM program was applied to
this final data base of 2106 blocks, using a series of clustering
percentages to obtain a family of lod substitution matrices.
This series of matrices is very similar to the series derived
from the second data base. Approximately similar matrices
were also obtained from data bases generated by PROTOMAT
using the PAM 120 matrix, using a matrix with a clustering
percentage of80%, and usingjust the odd- or even-numbered
groups (data not shown).

Aflgnments and Homology Searches. Global multiple align-
ments were done using version 3.0 of MULTALIN for DOS
computers (17). To provide a positive matrix, each entry was
increased by 8 (with default gap penalty of 8). Version 1.6b2
of Pearson's RDF2 program (18) was used to evaluate local
pairwise alignments.
Homology searches were done on a Sun Sparcstation using

the BLASTP version of BLAST dated 3/18/91 (11) and version
1.6b2 of FASTA (with ktup = 1 and -o options) and SSEARCH,
an implementation of the Smith-Waterman algorithm (18-
20). The Swiss-Prot 20 data bank (15) containing 22,654
protein sequences was searched, and one search was done
with each matrix for each of the 504 groups of proteins from
Prosite 8.0. The first of the longest and most distant se-
quences in the group was chosen as a searching query,
inferring distance from PROTOMAT results and Swiss-Prot
names.

In the BLOSUM matrices, the scores for B and Z were made
identical to those for D and E, respectively, and -1 was used
for the character X. We used the same gap penalties for all
matrices, -12 for the first residue in a gap, and -4 for
subsequent residues in a gap.
The results of each search were analyzed by considering

the sequences used by PROTOMAT to construct blocks for the
protein group as the true positive sequences and all others as
true negatives. BLAST reports the data bank matches up to a
certain level ofstatistical significance. Therefore, we counted
the number of misses as the number of true positive se-
quences not reported. For FASTA and SSEARCH, we followed
the empirical evaluation criteria recommended by Pearson
(19); the number of misses is the number of true positive
scores, which ranked below the 99.5th percentile of the true
negative scores.

RESULTS
Comparison to Dayhoff Matrices. The BLOSUM series de-

rived from alignments in blocks is fundamentally different
from the Dayhoff PAM series, which derives from the esti-
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The origin of the BLOCKS

• The aligned (gapless) blocks come from

• . . . alignning sequences

• for which we need a scoring matrix . . .

• 2× Henikoff used an iterative approach to circumvent this circular

reasonning.
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Generating blocks using PROTOMAT

• Input is a group of related proteins

• For each group the program MOTIF (Smith, Annau, Chandrasegaran

87) linearly scans for motifs of the form A1 − d1 −A2 − d2 −A3

• Overrepresented motifs are determined by a Poisson approxima-

tion (λ = nlPA1PA2PA3) and a user selected significance level

• The ungapped alignments (blocks) containing the significant

motifs are pruned (combining shorter motifs to longer ones)

• Each surviving block is scored by sum of pairs in each (positively

scored ) column using a user defined similarity matrix

• Each block is used to (re)align the group to itself

• The top 50 blocks are extended and merged if possible

• Statistical significance is determined by shuffling the sequences
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Group’s block assembly in PROTOMAT

• We now have a set of blocks “overlapping in different ways in various

subsets of sequences”

• Want to find a best path of nonoverlapping blocks which would serve

as a signature for this group

• Construct a directed graph whose vertices are the blocks

• Draw a directed edge from block a to b if a fully precedes b in

at least x of the sequences (x ≥ max(n/2,m) where m is the

MOTIF significance level?)

• Each vertex has a score: block score × number of merged motifs

• Path score is the sum of vertex score times the proportion of

sequences in the path.

• Using DFS (acyclic - why?) score each path and choose best

path

• The blocks from the best scoring path are recorded
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Using PROTOMAT to construct the BLOCKS

• Raw data included 504 nonredundant groups of proteins from Prosite

8.0

• Using a 0-1 scoring matrix PROTOMAT generates 2205 blocks

• These are used to create a scoring matrix a-la BLOSUM60

• Rerun PROTOMAT with the new scoring matrix to generate 1961 blocks

• Create a new “BLOSUM60” matrix from these

• Use this matrix in PROTOMAT on 559 groups of Prosite 9.0 to generate

2106 blocks (3-60 wide and 2-200+ deep)

• Generate the full range of BLOSUMX matrices.
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Markov chains

• A stochastic process Xn, n = 1, 2, . . . (each Xn is a random variable)

is a Markov chain if

P (Xn = j|X1 = i1, . . . , Xn−1 = in−1) = P (Xn = j|Xn−1 = in−1)

• The state space or simply the states of the chain are all js for which

the above is positive for some choice of iks

• The chain is homogenuous if the transition matrix P = (pij) is

independent of n

P (Xn = j|Xn−1 = i) = pij
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• Let Pn(i, j) = P (Xn = j|X1 = i) then,

Pn(i, j) =
∑

k

P (Xn = j, Xn−1 = k|X1 = i)

=
∑

k

P (Xn = j|Xn−1 = k, X1 = i)P (Xn−1 = k|X1 = i)

=
∑

k

P (Xn = j|Xn−1 = k)Pn−1(i, k)

=
∑

k

pkjPn−1(i, k)

• i.e. Pn = Pn−1P and by induction Pn = Pn

• Chapman-Kolmogorov equation
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Stationary distribution

• A chain is irreducible if for states i, j there exists n s.t. Pn(i, j) > 0

• If X1 ∼ q where q is a probability vector then X2 ∼ µ = qP :

µj := P (X2 = j) =
∑

i

P (X2 = j|X1 = i)P (X1 = i) =
∑

i

pijqi

• more generally, Xn ∼ qPn−1

• A probability vector π is a stationary or invariant probability vector of

the chain (P ) if πP = π

• Steady state: if X1 ∼ π then so is Xn ∀n

• An irreducible homogenuous Markov chain has a unique stationary

distribution π

• Moreover, for any probability vector q, limn qPn = π
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Accepted Point Mutation (Dayhoff et al. 68,72,78)

• “An APM in a protein is a replacement of one AA by another accepted

by evolution”

• We want to estimate the

• probability that given a site with AA A has udergone an APM,

the new AA is B

• the rates each AA undergoes an APM

• Dayhoff et al. estimated those from hypothetically constructed phylo-

genetic trees

• originally phylogenetic trees were used to represent evolutionary

relationship between species

• they can be used to represent relationship between sequences

• trees relating the sequences in 71 families were constructed using

the parsimony method


