CpG Islands - (Durbin Ch.3)

® In human genomes the C nucleotide of a dinucleotide CG is typically
methylated

® Methyl-C has a high chance of mutating intoa T
® Thus the dinucleotide CG (CpG) is under-represented

® Methylation is suppressed in some short stretches such as promoters
and start regions of genes

® These areas are called CpG islands (higher frequency of CG)

® Questions:

o Given a short stretch of genomic data, does it come from a CpG
island?

» Given a long piece of genomic data, does it contain CpG islands
in it, where, what length?



General decoding problem

e Common theme: given a sequence from a certain alphabet suggest
what is it?

» gene, coding sequence, promoter area, CpG island . . .
® How can we determine if a given sequence x is a CpG island?

e Construct two data generating models Hy ( “ocean”) and H; ( “island™)

o which one is more likely to have generated the given data
(classification problem)



LLR statistic and the Neyman-Pearson lemma

® Problem: decide whether a given data was generated under Hj or H;

® Solution: compute the LLR statistic

e (lassify according to a predetermined threshold (S(x) > s4)

® Neyman-Pearson: this test is optimal if Hy and H; are simple
hypotheses (as opposed to composite)

o H, is a simple hypothesis if Py, (x) is well defined
o For composite hypotheses the likelihood is replaced by a sup

® The optimality of the test:
o for a given type | error = probability of falsely rejecting Hy
o the type Il error = probability of falsely accepting H is minimized



Modeling CpG Islands - |

® For example, we can set both Hy and H; to be Markov chains with
different parametrization (transition probabilities)

® Learn the parameters from an annotated sample

o if the sample is big enough use ML estimators:

_|_

CL+ L Cst
st * +
D Cop/

» otherwise, smooth using a prior (add dummy counts)

® Based on 60,000 nucleotides:
A C G T

18 .27 43 12
17 37 .27 .19
16 34 338 .12

A c G T
30 .20 .29 21
32 .30 .08 .30
25 .25 30 .20

— O 0 >+
— O N > O




Modeling CpG Islands - | (cont.)

® Using the LLR statistic we have

S(x) = log B i Zlog e = Zﬁxz ey

a’xz 1%

where x is an artificial start point: ay,., = P(z1)

o If S(x) > 1 CpG island is more likely, otherwise no CpG island

10] —F

04 03 -02 -01 0 0.1 02 03 04
Bits



Hidden Markov Models

® The occasionally dishonest casino

o A casino uses a fair die most of the time

D 1=0
o occasionally switches to a loaded one: p;(i) = !
1 1#6
o Assume P(switch to loaded) = 0.05 and P(switch from loaded) =

0.1

® Let S, denote the die used at the nth roll then SS is a Markov chain

e which is hidden from us

» we see only the outcomes which could have been “emitted” from
either one of the states of the chain

® An example of a Hidden Markov Model (HMM)



Hidden Markov Models (cont.)

® More formally: (S, X) is an HMM if S is a Markov chain and
P(X,=z|S, X1,.... Xn-1, X0nt1,.-., X)) = P(X,, = z|S,) =: eg, ()

o e5(x) = P(X; = x|S; = s) are called the emission probabilities

® Application in communication:

» message sent is (S1,...,Sm)
o received (x1,...,%m)
o What is the most likely message sent?

® Speech recognition (HMM's origins)
e Claim. The joint probability is given by

L
P(S — S, X — CB) — p(87 m) — H asi_lsiesi(x’i)7



HMM for CpG island

® States: {+,—} x A,C,T,G
® Emissions: ey, (y) =e_,(y) = 1,—,

® All states are communicating with transition probabilities estimated
from annotated sequences

® \We are interested in decoding a given sequence x: what is the most
likely path that generated this sequence

® A path automatically yields annotation of CpG islands



The Viterbi algorithm

Problem: given the parameters 6 = (as:,es) of an HMM and an
emitted sequence x, find

*

s* := argmax, P(S = s|X = x)

Note that
s* = argmax, P(S = s|X = x)P(X = x) = argmax_p(s, x)
Let Eir(s,x) :={S1: = (S1:i-1, k), X1:i = ®1.4}

and let vg (i) := maxg P|E;k(s, x)]
Claim. Ul(i -+ 1) = 6[(337;_|_1) maxk(vk(i)akl)

Note that this is a constructive recursive claim



10

The Viterbi algorithm (cont.)

® \We add the special initial state 0
e |nitialization: vp(0) =1, v&(0) =0 for kK > 0

® For:=1...L do, for each state [:

o (1) = ey(x;) maxg v (i — 1)ag

o ptr;(l) = argmax, vi(t — 1)aw
® [ermination:

o p(s*, @) = maxy vg(L)
® Traceback:

o 87 = argmax,, vi(L)
o fori=1L,...,2: 87 | = ptr;(s})



Rolls
Die
Vvitcerbi

Rolls
Die
Viterbi

Rolls
Die
Viterbi

Rolls
Die
Viterbli
Rolls
Die
Viterbi

300 rolls of our casino apy, = 0.05, arr = 0.1, e (1) =

The Viterbi algorithm (cont.)

315116246446644245311321631164152133625144543631656626566666
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

651166453132651245636664631636663162326455236266666625151631
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

222555441666566563564324364131513465146353411126414626253356
FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

366163666466232534413661661163252562462255265252266435353336
LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
233121625364414432335163243633665562466662632666612355245242

FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

5 i=6
1 i#£6

11



The forward algorithm for computing p(x)

e We want to compute p(x) = ) p(x, s)
® The number of summands grow exponentially with L

® Fortunately we have the forward algorithm based on:
o Let Ei(x, k) :={S; =k, X1, =14}
o Claim. fi(i +1) = ef(@it1) Dy k() an

® As in the Viterbi case, this is a constructive recursion:
o Initialization: fy(0) :=1, fx(0) :=0 for k£ > 0
o Forio=1,...,L: fi(i) =e(z:) >, [x(t — 1)aw
o Termination: p(x) = >, fr(k)

® By itself the forward algorithm is not that important

» However it is an important for decoding: computing P(S; = k|x)
o e.g.: did you loose your house on a loaded die?

12



Posterior distribution of S;

® What is p;(k|x) := P(S; = k| X = x)?

® Since we know p(x), its suffices to find P(S; =k, X = x):

P(S% — ka X = w) — P(Sz — /C, X1, = L1:4, Xi—i—l:L — wi—i—l:L)
— P(Sz' =k, X1, = €B1:i)><
P(X¢+1:L — 5137;+1:L|Sz' =k, X145 = 5131:@)

= fi(0) B(Xit1:L = ir1.r|Si = k)
by (i)

13



14

The backward algorithm

® The backward algorithm computes by () based on

e Claim. bk(Z) = ZZ aklbl(i -+ 1)6[(26“_1)
® The algorithm:

o Initialization: bx(L) = 1 (more generally bi(L) = arpa, where A
is a terminating state)

e Forg=L—-1,...,1: bk(]) = Zl aklbl(j + 1)61(£Ej_|_1)

e Finally,

pi(k|z) = fkg()il;(i)

® To compute p;(k|x) for all i, k, run both the backward and forward
algorithms once storing fx(i) and by (%) for all 7, k.

® Complexity: let m be the number of states, space O(mL), time

O(m?L)



Decoding example

P (tair)

0 50 100 150 200 250 300

pi(F|x) for same xi1.300 as in the previous graph. Shaded areas
correspond to a loaded die. As before,

0.05 0.1, er (i) 0 1=0
arr, = 0.05, arrp = 0.1, ef(2) = _
FL LF L 1 27&6

15



More on posterior decoding

® More generally we might be interested in the expected value of some
function of the path, ¢g(.S) conditioned on the data «.

® For example, if for the CpG HMM g(s) = 1., (s;), then
Elg(S)|®] = >  P(S; = k*|x) = P(+|x)
k

® Comparing that with P(—|x) we can find the most probable labeling
for x;

® \We can do that for every ¢

16



More on posterior decoding/labeling

® This maximal posterior labeling procedure applies more generally when
labeling defines a partition of the states

o« Warning: this is not the same as the most probable global
labeling of a given sequence!

o In our example the latter is given by the Viterbi algorithm

o pp. 60-61 in Durbin compare the two approaches:
Same FN, posterior predicts more short FP

17



18

Decoding example

P(fair)

0 100 200 300 400 500 600 700 800 900 1000

pi(F|x) for x1.300. Shaded areas correspond to a loaded die. Note
that ap;, = 0.01, ar,p = 0.1. Viterbi misses the loaded die altogether!




Parameter Estimation for HMMs

® An HMM model is defined by the parameters:
O = {ay;, ex(b) : V states k,l and symbols b}

® We determine © using data, or a training set {x',..., "}, where x’
are independent samples generated by the model

® The likelihood of © given the data is
P(N{X7 = 2’}|0) := Po(N{ X’ = 27}) = | | Pe(X7 = &)
® For better numerical stability we work with Iog—likélihood
l(z',...,2"|0) =) log Po(X’ = a)
J

® The maximum likelihood estimator of © is the value of © that
maximizes the likelihood given the data.

19



Parameter Estimation for HMMs - special case

® Suppose our data is labeled in the sense that in addition to each x’
we are given the corresponding path s’

® |n the CpG model this would correspond to having annotated sequences
e Can our framework handle the new data?

® Yes, the likelihood of © is, as before, the probability of the data
assuming it was generated by the “model ©":

I({x’,s'}|O) = ZlogP@(Xj = q/, S = )
J
® The addition of the path information turns the ML estimation problem
into a trivial one

» Analogy: it is easier to compute p(x|s) than p(x)

20



MLE for HMMs when the path is given

o Let Ay = {(j,i): 5] =k, s =1}
® and Ei(b) = |{(j,1) : 5] = k, 2 = b}|, then

[({x?,87}]|©) = Zlog (X! =a, 8 = &)

—2:2:1()gcp7 ijZZloge j

zlz

= Z Apilogag + Z E(b) log e (b

_ZZAkllog@kl+ZZEk logek

® Thus,

Supl({aﬂ s’}|O) = ZSUPZAM log akH‘Z sup ZE’“

Okl e ek(b)

) log e (b

21



MLE for HMMs when the path is given - cont.

® For each fixed k maximizing > _, Ay;log ay; is subject to the constraint
2k =1

® Can use Lagrange multipliers for the function f(a) =), A;loga; and
the constraint g(a) = ), a; = 1 to get the ML estimates:

. A
Kl =
> v Ak

B
(0) = S~ 5 )

® |f the sample set is too small we add pseudocounts to the actual
counts: we use A}, = Ap; + 1 and B (b) = Ei(b) 4+ 71 (b)

o 711, Tk(b) > 0 and their magnitude reflects our prior biases
o There is a natural Bayesian framework to justify this

22



23

MLE for HMMs when the path is not given

® No such elegant ML solution exists when the path is not given: simply
computing p(x) requires the forward algorithm

o we resort to heuristics
® Had we known the path the problem would have been easy
® \We can think of the path as “missing data”

® A general algorithm that works in this framework is the EM algorithm
by Dempster Laird & Rubin (77)

® The Baum-Welch algorithm (72) is a particular example of EM applied
to our case

® |t is an iterative algorithm that monotonically converges to a local
maximum of [(x!,..., z"|0):

o l(x!,...,2"|O,,) increases with m



The Baum-Welch algorithm

® Suppose we had, ©g, an initial guess of ©

® This ©y would induce a conditional distribution

o on the space of paths given the data, e.g.,

P(S? = k|©y, X7 =) =

where is O on the rhs?
o and on the joint space of state and emission given the data:

fk(i)blf(i) |

pai) X

P(S? =k, X! =b|0g, X = /) =

from which we can deduce a conditional emission distribu-
tion per each state



The Baum-Welch algorithm - cont.

We then replace our currently random counts Ag; and Ej(b) by their
expected value with respect to the above distribution

o The E step in Expectation Maximization

Next we update our guess of © by thinking about the expected counts
as real counts

More precisely, we maximize
lo,({x?,s7}|©) : ZZAM log ag ‘|‘ZZEk ) log ey (b),

where Ag; and Ej(b) are the expected counts wrt O

o The M step in Expectation Maximization
lterate E & M steps stopping according to a convergence criterion

Claim. I(x!,...,2"|©,,) increases with m



The M-step

® Maximize
lo,({27,s7}|0) = ZZAM log ag; + ZZEk ) log e (b
ko1

® \We already know how to solve this problem:

. A
Kl =
> v Ak

B
(0) = S~ 5 )

26



27

The E-step

n L
A=) ) P(S] =k S =10y X/ = a7)

j—li—l

Z
Z ) Z Poy(S;_1 =k, X{:i—l — w{:i—l)

><})@O(S:” 1_kX{z 1_213‘12 1)
(X ‘7’5]_1551_]“)@1@ 1_5’7{@ 1)
(X} 1L_xz—|—1L’S]_lS]1_kX 1:@)

ZP@O —k,Sg:l,Xj:a:j)

_|_

1
- T2 fi@aner(l )b+ 1)

—~ p(a’)




e Finally,

The E-step - cont.

Bub) =3 - 3" A

® Proof. HW exercise

~ p(aI
J p( )za:

28



The EM algorithm

x is the observed data, y is the missing data

Looking for © that will maximize Pg(X = x)

» same as maximizing log pe(x)
“Readily” solvable if y was known, but it is not

Solution: guess y then maximize © and use the new model to update
your guess of y

More precisely your guess is distributional: many guesses weighted
according to your belief in them

It is technically beneficial to assume that Y is discrete

29



The EM algorithm - cont.

e Start with some ©g

® O( and the given data @ induce a conditional distribution on y:

po,(y|x) = Po,(Y =y|X = x)

® At the E-step we compute
E@O[logp@(X, Y)‘X — ZE] — E@O[logp@(:c, Y)‘X — 33]

— Z log pe(x, y)pe,(y|x)

Yy
® At the M-step we choose © that maximizes the conditional expectation

we computed at the E-step:

O, := argmaxg Z log pe(x, y)pe,(y|T)
Yy
® |terate the EM steps till desired numerical convergence

30



Properties of the EM algorithm

® Theorem. The likelihood increases monotonically

10gp9t+1 (z) > log py,(x)
® Proof. See notes

® Theorem. If
(67 @0) — E@O[lng@(X, Y)|X — CIZ]

Is a continuous function of © and ©, then for any sequence of O:

o all its limit points are stationary points of © — log pe(x)

o logpe, (x) converges to a stationary value L* = log pe«(x) for
some stationary point ©*

o if L™ is uniquely attained then O, — O
® Proof. Wu (83)

31



32

Comments on the EM algorithm

® EM is a determinstic algorithm

® EM relies on the fact that maximizing

Ee,llogpe(X,Y)|X = o] = ) logpe(x, y)pe,(y|z)
Yy

can be done either in closed form or in a relatively simple numerical
calculation

® For convergence it suffices to choose ©;11 so that

E@t[logp@t+1(X7 Y)|X =z| > Eg,|logpe,(X,Y)| X = x|

o Generalized EM



33

Potential EM pitfalls

® EM can converge to L* := limy log pe, () which is not the value at
a stationary point

® Even if L* = log pe+(x) where ©* is a stationary point, O might not
converge to OF

® Moreover, ©* can be a saddle point or. . . a local minimum!

® While the latter two are somewhat pathological cases, convergence to
a local maximum is typically the reality for complex systems



Baum-Welch as EM

® The missing data is the path: Y = §

® The full log-likelihood function is
logg(x, s) ZZA“ )logag + ZZEk (b, s)log e (b)
® Taking conditional expectation Fg,(-|X = x) we get
E@t[log@(X S)‘X = :1: Z ZE@t Akl ‘X — a:] log Al

n Z ZE@t [Ex(b, 8)| X = x]loge(b)
k b

® Which is exactly the expression we maximized wrt © = {ax;, ex(b)}

34



