
1

CpG Islands - (Durbin Ch.3)

• In human genomes the C nucleotide of a dinucleotide CG is typically

methylated

• Methyl-C has a high chance of mutating into a T

• Thus the dinucleotide CG (CpG) is under-represented

• Methylation is suppressed in some short stretches such as promoters

and start regions of genes

• These areas are called CpG islands (higher frequency of CG)

• Questions:

• Given a short stretch of genomic data, does it come from a CpG

island?

• Given a long piece of genomic data, does it contain CpG islands

in it, where, what length?

2

General decoding problem

• Common theme: given a sequence from a certain alphabet suggest

what is it?

• gene, coding sequence, promoter area, CpG island . . .

• How can we determine if a given sequence x is a CpG island?

• Construct two data generating models H0 (“ocean”) and H1 (“island”)

• which one is more likely to have generated the given data

(classification problem)

3

LLR statistic and the Neyman-Pearson lemma

• Problem: decide whether a given data was generated under H0 or H1

• Solution: compute the LLR statistic

S(x) = log
PH1(x)
PH0(x)

• Classify according to a predetermined threshold (S(x) > sα)

• Neyman-Pearson: this test is optimal if H0 and H1 are simple

hypotheses (as opposed to composite)

• Hi is a simple hypothesis if PH0(x) is well defined

• For composite hypotheses the likelihood is replaced by a sup

• The optimality of the test:

• for a given type I error = probability of falsely rejecting H0

• the type II error = probability of falsely accepting H0 is minimized

4

Modeling CpG Islands - I

• For example, we can set both H0 and H1 to be Markov chains with

different parametrization (transition probabilities)

• Learn the parameters from an annotated sample

• if the sample is big enough use ML estimators:

a+
st :=

c+
st∑

t′ c
+
st′

• otherwise, smooth using a prior (add dummy counts)

• Based on 60,000 nucleotides:
+ A C G T

A .18 .27 .43 .12

C .17 .37 .27 .19

G .16 .34 .38 .12

T . . .

0 A C G T

A .30 .20 .29 .21

C .32 .30 .08 .30

G .25 .25 .30 .20

T . . .

5

Modeling CpG Islands - I (cont.)

• Using the LLR statistic we have

S(x) = log
PH1(x)
PH0(x)

=
∑

i

log
a+

xi−1xi

a−xi−1xi

=
∑

i

βxi−1xi

where x0 is an artificial start point: ax0x1 = P (x1)

• If S(x) > 1 CpG island is more likely, otherwise no CpG island

6

Hidden Markov Models

• The occasionally dishonest casino

• A casino uses a fair die most of the time

• occasionally switches to a loaded one: pl(i) =

{
.5 i = 6

.1 i 6= 6
• Assume P (switch to loaded) = 0.05 and P (switch from loaded) =

0.1

• Let Sn denote the die used at the nth roll then SS is a Markov chain

• which is hidden from us

• we see only the outcomes which could have been “emitted” from

either one of the states of the chain

• An example of a Hidden Markov Model (HMM)

7

Hidden Markov Models (cont.)

• More formally: (S,X) is an HMM if S is a Markov chain and

P (Xn = x|S, X1, . . . , Xn−1, Xn+1, . . . , XL) = P (Xn = x|Sn) =: eSn(x)

• es(x) = P (Xi = x|Si = s) are called the emission probabilities

• Application in communication:

• message sent is (s1, . . . , sm)
• received (x1, . . . , xm)
• What is the most likely message sent?

• Speech recognition (HMM’s origins)

• Claim. The joint probability is given by

P (S = s,X = x) = p(s,x) =
L∏

i=1

asi−1si
esi

(xi),

8

HMM for CpG island

• States: {+,−} × A, C, T, G

• Emissions: e+x(y) = e−x(y) = 1x=y

• All states are communicating with transition probabilities estimated

from annotated sequences

• We are interested in decoding a given sequence x: what is the most

likely path that generated this sequence

• A path automatically yields annotation of CpG islands

9

The Viterbi algorithm

• Problem: given the parameters θ = (ast, es) of an HMM and an

emitted sequence x, find

s∗ := argmaxs P (S = s|X = x)

• Note that

s∗ = argmaxs P (S = s|X = x)P (X = x) = argmaxs p(s,x)

• Let Eik(s,x) := {S1:i = (s1:i−1, k),X1:i = x1:i}
and let vk(i) := maxs P [Eik(s,x)]

• Claim. vl(i + 1) = el(xi+1) maxk(vk(i)akl)

• Note that this is a constructive recursive claim

10

The Viterbi algorithm (cont.)

• We add the special initial state 0

• Initialization: v0(0) = 1 , vk(0) = 0 for k > 0

• For i = 1 . . . L do, for each state l:

• vl(i) = el(xi) maxk vk(i− 1)akl

• ptri(l) = argmaxk vk(i− 1)akl

• Termination:

• p(s∗,x) = maxk vk(L)

• Traceback:

• s∗L = argmaxk vk(L)
• for i = L, . . . , 2: s∗i−1 = ptri(s∗i)

11

The Viterbi algorithm (cont.)

300 rolls of our casino aFL = 0.05, aLF = 0.1, eL(i) =

{
.5 i = 6

.1 i 6= 6
.

12

The forward algorithm for computing p(x)

• We want to compute p(x) =
∑

s p(x, s)

• The number of summands grow exponentially with L

• Fortunately we have the forward algorithm based on:

• Let Ei(x, k) := {Si = k, X1:i = x1:i}
• Claim. fl(i + 1) = el(xi+1)

∑
k fk(i)akl

• As in the Viterbi case, this is a constructive recursion:

• Initialization: f0(0) := 1, fk(0) := 0 for k > 0
• For i = 1, . . . , L: fl(i) = el(xi)

∑
k fk(i− 1)akl

• Termination: p(x) =
∑

k fL(k)

• By itself the forward algorithm is not that important

• However it is an important for decoding: computing P (Si = k|x)
• e.g.: did you loose your house on a loaded die?

13

Posterior distribution of Si

• What is pi(k|x) := P (Si = k|X = x)?

• Since we know p(x), its suffices to find P (Si = k, X = x):

P (Si = k, X = x) = P (Si = k, X1:i = x1:i,Xi+1:L = xi+1:L)

= P (Si = k, X1:i = x1:i)×
P (Xi+1:L = xi+1:L|Si = k, X1:i = x1:i)

= fk(i) P (Xi+1:L = xi+1:L|Si = k)︸ ︷︷ ︸
bk(i)

14

The backward algorithm

• The backward algorithm computes bk(i) based on

• Claim. bk(i) =
∑

l aklbl(i + 1)el(xi+1)

• The algorithm:

• Initialization: bk(L) = 1 (more generally bk(L) = ak4, where 4
is a terminating state)

• For j = L− 1, . . . , i: bk(j) =
∑

l aklbl(j + 1)el(xj+1)

• Finally,

pi(k|x) =
fk(i)bk(i)

p(x)

• To compute pi(k|x) for all i, k, run both the backward and forward

algorithms once storing fk(i) and bk(i) for all i, k.

• Complexity: let m be the number of states, space O(mL), time

O(m2L)

15

Decoding example

pi(F |x) for same x1:300 as in the previous graph. Shaded areas

correspond to a loaded die. As before,

aFL = 0.05, aLF = 0.1, eL(i) =

{
.5 i = 6

.1 i 6= 6
.

16

More on posterior decoding

• More generally we might be interested in the expected value of some

function of the path, g(S) conditioned on the data x.

• For example, if for the CpG HMM g(s) = 1+(si), then

E[g(S)|x] =
∑

k

P (Si = k+|x) = P (+|x)

• Comparing that with P (−|x) we can find the most probable labeling

for xi

• We can do that for every i

17

More on posterior decoding/labeling

• This maximal posterior labeling procedure applies more generally when

labeling defines a partition of the states

• Warning: this is not the same as the most probable global

labeling of a given sequence!

• In our example the latter is given by the Viterbi algorithm

• pp. 60-61 in Durbin compare the two approaches:

. Same FN, posterior predicts more short FP

18

Decoding example

pi(F |x) for x1:300. Shaded areas correspond to a loaded die. Note

that aFL = 0.01, aLF = 0.1. Viterbi misses the loaded die altogether!

19

Parameter Estimation for HMMs

• An HMM model is defined by the parameters:

Θ = {akl, ek(b) : ∀ states k, l and symbols b}

• We determine Θ using data, or a training set {x1, . . . ,xn}, where xj

are independent samples generated by the model

• The likelihood of Θ given the data is

P (∩j{Xj = xj}|Θ) := PΘ(∩j{Xj = xj}) =
∏
j

PΘ(Xj = xj)

• For better numerical stability we work with log-likelihood

l(x1, . . . ,xn|Θ) =
∑

j

log PΘ(Xj = xj)

• The maximum likelihood estimator of Θ is the value of Θ that

maximizes the likelihood given the data.

20

Parameter Estimation for HMMs - special case

• Suppose our data is labeled in the sense that in addition to each xj

we are given the corresponding path sj

• In the CpG model this would correspond to having annotated sequences

• Can our framework handle the new data?

• Yes, the likelihood of Θ is, as before, the probability of the data

assuming it was generated by the “model Θ”:

l({xj, sj}|Θ) =
∑

j

log PΘ(Xj = xj,Sj = sj)

• The addition of the path information turns the ML estimation problem

into a trivial one

• Analogy: it is easier to compute p(x|s) than p(x)

21

MLE for HMMs when the path is given

• Let Akl = |{(j, i) : sj
i−1 = k, sj

i = l}|

• and Ek(b) = |{(j, i) : sj
i = k, xj

i = b}|, then

l({xj, sj}|Θ) =
∑

j

log PΘ(Xj = xj,Sj = sj)

=
∑

j

∑
i

log a
s
j
i−1s

j
i
+

∑
j

∑
i

log e
s
j
i
(xj

i)

=
∑
k,l

Akl log akl +
∑
k,b

Ek(b) log ek(b)

=
∑

k

∑
l

Akl log akl +
∑

k

∑
b

Ek(b) log ek(b)

• Thus,

sup
Θ

l({xj, sj}|Θ) =
∑

k

sup
akl

∑
l

Akl log akl+
∑

k

sup
ek(b)

∑
b

Ek(b) log ek(b)

22

MLE for HMMs when the path is given - cont.

• For each fixed k maximizing
∑

l Akl log akl is subject to the constraint∑
l akl = 1

• Can use Lagrange multipliers for the function f(a) =
∑

l Al log al and

the constraint g(a) =
∑

l al = 1 to get the ML estimates:

akl =
Akl∑
l′ Akl′

ek(b) =
Ek(b)∑
b′ Ek(b′)

• If the sample set is too small we add pseudocounts to the actual

counts: we use A′
kl = Akl + rkl and E′

k(b) = Ek(b) + rk(b)

• rkl, rk(b) > 0 and their magnitude reflects our prior biases

• There is a natural Bayesian framework to justify this

23

MLE for HMMs when the path is not given

• No such elegant ML solution exists when the path is not given: simply

computing p(x) requires the forward algorithm

• we resort to heuristics

• Had we known the path the problem would have been easy

• We can think of the path as “missing data”

• A general algorithm that works in this framework is the EM algorithm

by Dempster Laird & Rubin (77)

• The Baum-Welch algorithm (72) is a particular example of EM applied

to our case

• It is an iterative algorithm that monotonically converges to a local

maximum of l(x1, . . . ,xn|Θ):

• l(x1, . . . ,xn|Θm) increases with m

24

The Baum-Welch algorithm

• Suppose we had, Θ0, an initial guess of Θ

• This Θ0 would induce a conditional distribution

• on the space of paths given the data, e.g.,

P (Sj
i = k|Θ0,X

j = xj) =
fk(i)bk(i)

p(xj)

. where is Θ0 on the rhs?
• and on the joint space of state and emission given the data:

P (Sj
i = k, Xj

i = b|Θ0,X
j = xj) =

fk(i)bk(i)
p(xj)

· 1
X

j
i =b

. from which we can deduce a conditional emission distribu-

tion per each state

25

The Baum-Welch algorithm - cont.

• We then replace our currently random counts Akl and Ek(b) by their

expected value with respect to the above distribution

• The E step in Expectation Maximization

• Next we update our guess of Θ by thinking about the expected counts

as real counts

• More precisely, we maximize

lΘ0({x
j, sj}|Θ) :=

∑
k

∑
l

Akl log akl +
∑

k

∑
b

Ek(b) log ek(b),

where Akl and Ek(b) are the expected counts wrt Θ0

• The M step in Expectation Maximization

• Iterate E & M steps stopping according to a convergence criterion

• Claim. l(x1, . . . ,xn|Θm) increases with m

26

The M-step

• Maximize

lΘ0({x
j, sj}|Θ) =

∑
k

∑
l

Akl log akl +
∑

k

∑
b

Ek(b) log ek(b)

• We already know how to solve this problem:

akl =
Akl∑
l′ Akl′

ek(b) =
Ek(b)∑
b′ Ek(b′)

27

The E-step

Akl =
n∑

j=1

L∑
i=1

P (Sj
i−1 = k, Sj

i = l|Θ0,X
j = xj)

=
∑

j

1
p(xj)

∑
i

PΘ0(S
j
i−1 = k, Sj

i = l,Xj = xj)

=
∑

j

1
p(xj)

∑
i

PΘ0(S
j
i−1 = k, Xj

1:i−1 = xj
1:i−1)

× PΘ0(S
j
i = l|Sj

i−1 = k, Xj
1:i−1 = xj

1:i−1)

× PΘ0(X
j
i = xj

i |S
j
i = l, Sj

i−1 = k, Xj
1:i−1 = xj

1:i−1)

× PΘ0(X
j
i+1:L = xj

i+1:L|S
j
i = l, Sj

i−1 = k, Xj
1:i = xj

1:i)

=
∑

j

1
p(xj)

∑
i

f j
k(i)aklel(x

j
i+1)b

j
l (i + 1)

28

The E-step - cont.

• Finally,

Ek(b) =
∑

j

1
p(xj)

∑
i:x

j
i=b

f j
k(i)bj

k(i)

• Proof. HW exercise

29

The EM algorithm

• x is the observed data, y is the missing data

• Looking for Θ that will maximize PΘ(X = x)

• same as maximizing log pΘ(x)

• “Readily” solvable if y was known, but it is not

• Solution: guess y then maximize Θ and use the new model to update

your guess of y

• More precisely your guess is distributional: many guesses weighted

according to your belief in them

• It is technically beneficial to assume that Y is discrete

30

The EM algorithm - cont.

• Start with some Θ0

• Θ0 and the given data x induce a conditional distribution on y:

pΘ0(y|x) := PΘ0(Y = y|X = x)

• At the E-step we compute

EΘ0[log pΘ(X,Y)|X = x] = EΘ0[log pΘ(x,Y)|X = x]

=
∑

y

log pΘ(x,y)pΘ0(y|x)

• At the M-step we choose Θ that maximizes the conditional expectation

we computed at the E-step:

Θ1 := argmaxΘ

∑
y

log pΘ(x,y)pΘ0(y|x)

• Iterate the EM steps till desired numerical convergence

31

Properties of the EM algorithm

• Theorem. The likelihood increases monotonically

log pθt+1(x) ≥ log pθt(x)

• Proof. See notes

• Theorem. If

(Θ,Θ0) 7→ EΘ0[log pΘ(X,Y)|X = x]

is a continuous function of Θ and Θ0, then for any sequence of Θk:

• all its limit points are stationary points of Θ 7→ log pΘ(x)
• log pΘk

(x) converges to a stationary value L∗ = log pΘ∗(x) for

some stationary point Θ∗

• if L∗ is uniquely attained then Θk → Θ∗

• Proof. Wu (83)

32

Comments on the EM algorithm

• EM is a determinstic algorithm

• EM relies on the fact that maximizing

EΘ0[log pΘ(X,Y)|X = x] =
∑

y

log pΘ(x,y)pΘ0(y|x)

can be done either in closed form or in a relatively simple numerical

calculation

• For convergence it suffices to choose Θt+1 so that

EΘt[log pΘt+1(X,Y)|X = x] > EΘt[log pΘt(X,Y)|X = x]

• Generalized EM

33

Potential EM pitfalls

• EM can converge to L∗ := limk log pΘk
(x) which is not the value at

a stationary point

• Even if L∗ = log pΘ∗(x) where Θ∗ is a stationary point, Θk might not

converge to Θ∗

• Moreover, Θ∗ can be a saddle point or. . . a local minimum!

• While the latter two are somewhat pathological cases, convergence to

a local maximum is typically the reality for complex systems

34

Baum-Welch as EM

• The missing data is the path: Y = S

• The full log-likelihood function is

logΘ(x, s) =
∑

k

∑
l

Akl(s) log akl +
∑

k

∑
b

Ek(b, s) log ek(b)

• Taking conditional expectation EΘt(·|X = x) we get

EΘt[logΘ(X,S)|X = x] =
∑

k

∑
l

EΘt[Akl(S)|X = x] log akl

+
∑

k

∑
b

EΘt[Ek(b, S)|X = x] log ek(b)

• Which is exactly the expression we maximized wrt Θ = {akl, ek(b)}

