CS 626 - COMPUTATIONAL MOLECULAR BIOLOGY
Chapter 2
(b) Exact sequence comparison.
b.1 Introduction

Sequence alignment (to be defined below) is a tool to test for a potential similarity between a sequence of an unknown target protein and a single (or a family of) well-characterized protein(s).

Figure 3: A cartoon plot of how a database of annotated proteins is used to identify a novel sequence

[image: image344.wmf]T

[image: image345.wmf]()

PT

[image: image346.wmf]Z

[image: image347.wmf](

)

pZ

We denote the sequence of the unknown protein by
[image: image1.wmf]A

. It is a short cut for the explicit sequence
[image: image2.wmf]12

,,...,

n

Aaaa

=

, where
[image: image3.wmf]i

a

 is an amino acid placed at the
[image: image4.wmf]i

 position along the sequence. The sequences of the known proteins, that make the comparison database, are called
[image: image5.wmf]{

}

1

Q

q

q

B

=

 where
[image: image6.wmf]12

,,...,

qqq

qm

Bbbb

=

, and
[image: image7.wmf]Q

 is the total number of proteins in the database. For sequences only, the database may include hundreds of thousands of entries [http://www.expasy.ch/srs5/]. Databases that include both sequences and structures are limited to about ten thousands [http://www.rcsb.org/pdb/]. For clarity we omit the index from
[image: image8.wmf]q

B

 and use
[image: image9.wmf]B

 to represent a member of the comparison set.

Table 1: A sample of protein sequences. Typical lengths of protein sequences vary from a few tens to a few hundreds. The single letter notation (one character for an amino acid) is used.

Serine Protease inhibitor

EDICSLPPEV GPCRAGFLKF AYYSELNKCK LFTYGGCQGN ENNFETLQAC XQA

Amicyanin alpha

MRALAFAAALAAFSATAALAAGALEAVQEAPAGSTEVKIAKMKFQTPEVR IKAGSAVTWTNTEALPHNVHFKSGPGVEKDVEGPMLRSNQTYSVKFNAPG TYDYICTPHPFMKGKVVVE

Major Histocompatability Complex (class I)

MAVMAPRTLV LLLSGALALT QTWAGSHSMR YFSTSVSRPG RGEPRFIAVG YVDDTQFVRF

DSDAASQRME PRAPWIEQEG PEYWDRNTRN VKAHSQTDRV DLGTLRGYYN QSEDGSHTIQ

RMYGCDVGSD GRFLRGYQQD AYDGKDYIAL NEDLRSWTAA DMAAEITKRK WEAAHFAEQL

RAYLEGTCVE WLRRHLENGK ETLQRTDAPK THMTHHAVSD HEAILRCWAL SFYPAEITLT

WQRDGEDQTQ DTELVETRPA GDGTFQKWAA VVVPSGQEQR YTCHVQHEGL PEPLTLRWEP

SSQPTIPIVG IIAGLVLFGA VIAGAVVAAV RWRRKSSDRK GGSYSQAASS DSAQGSDVSL

TACKV

For any two sequences
[image: image10.wmf]A

 and
[image: image11.wmf]B

 we wish to determine how similar they are. This is a non-trivial task that requires a pause and a clear definition of what we mean by similar. The simplest definition is the fraction of amino acids in
[image: image12.wmf]B

 that are identical to
[image: image13.wmf]A

. In proteins high sequence identity (roughly above 35 percent) immediately implies close relationship. A more subtle definition use amino acids with similar physical or biochemical properties. For example, it is ok to replace a hydrophobic amino acid like leucine (L) by valine (V). The effect on the hydrophobic core of the protein is expected to be small. However, changing (L) to a charged residue like arginine (R) it is not ok and may cause major reduction in protein stability. Hence, there is a gray area between an exact matching a mismatch. This gray area is better described by a continuous scoring function that gives the highest score for an identity and the lowest possible score for substitution that do not make chemical, physical or biological sense.

For that purpose a score function needs to be established to measure the similarity between the sequences. We now assume that when comparing the sequences
[image: image14.wmf]A

 and
[image: image15.wmf]B

, the total score
[image: image16.wmf](

)

,

SAB

 will be given by a sum of terms, each term comparing two elements. The choice of the pairs of elements for the similarity test is called an alignment and is the focus of the present section. An element is not necessarily an amino acid. It can also be a “space” (gap). For example, consider the case in which
[image: image17.wmf]A

 is longer than
[image: image18.wmf]B

. In that case it is obvious that some amino acids of
[image: image19.wmf]A

 will be aligned against a “space” (gap).

Before asking questions about the alignment process, let us start with the score, how to measure the similarity of a pair of elements.

The scores of pairs of elements, which measure the similarity of the
[image: image20.wmf]a

-s and the
[image: image21.wmf]b

-s, form the so-called substitution matrix
[image: image22.wmf](

)

,

Sab

. The matrix is symmetric, and of size
[image: image23.wmf]2020

´

 (the number of amino acid types). Note that the term “substitution” may be misleading since it suggests a direction (substituting
[image: image24.wmf]a

 by
[image: image25.wmf]b

 implies that
[image: image26.wmf]a

 was there first). A symmetric matrix does not have a sense of time, and the order of substitutions does not change the score, or the degree of similarity. Nevertheless, a non-symmetric variation of the sequence as a function of time is of considerable interest. A direction in sequence-similarity-scores is potentially informative, providing molecular fingerprints for evolutionary time scales. However, it is hard to estimate it without a specific model in mind. At present, for the purpose of finding protein relatives, we shall use the simplest way out and ignore the time arrow of evolution. A widely used (symmetric) substitution matrix is given below. It is extracted from probabilities. Consider two sequences
[image: image27.wmf]A

 and
[image: image28.wmf]B

 of evolutionary related proteins that are aligned against each other. The choice of the proteins and the alignment procedure will be discussed later. Let
[image: image29.wmf](

)

,

Pab

 be the probability that amino acids
[image: image30.wmf]a

 and
[image: image31.wmf]b

 are aligned against each other. Let
[image: image32.wmf](

)

Pa

 and
[image: image33.wmf](

)

Pb

 be the probabilities of finding the amino acids
[image: image34.wmf]a

 and
[image: image35.wmf]b

 in the protein that we considered. The score is given by
[image: image36.wmf](

)

(

)

(

)

(

)

,log,

SabPabPaPb

l

=

éù

ëû

The BLOSUM 50 matrix

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	A
	R
	N
	D
	C
	Q
	E
	G
	H
	I
	L
	K
	M
	F
	P
	S
	T
	W
	Y
	V
	

	:A
	5
	-2
	-1
	-2
	-1
	-1
	-1
	0
	-2
	-1
	-2
	-1
	-1
	-3
	-1
	1
	0
	-3
	-2
	0
	:A

	:R
	-2
	7
	-1
	-2
	-4
	1
	0
	-3
	0
	-4
	-3
	3
	-2
	-3
	-3
	-1
	-1
	-3
	-1
	-3
	:R

	:N
	-1
	-1
	7
	2
	-2
	0
	0
	0
	1
	-3
	-4
	0
	-2
	-4
	-2
	1
	0
	-4
	-2
	-3
	:N

	:D
	-2
	-2
	2
	8
	-4
	0
	2
	-1
	-1
	-4
	-4
	-1
	-4
	-5
	-1
	0
	-1
	-5
	-3
	-4
	:D

	:C
	-1
	-4
	-2
	-4
	13
	-3
	-3
	-3
	-3
	-2
	-2
	-3
	-2
	-2
	-4
	-1
	-1
	-5
	-3
	-1
	:C

	:Q
	-1
	1
	0
	0
	-3
	7
	2
	-2
	1
	-3
	-2
	2
	0
	-4
	-1
	0
	-1
	-1
	-1
	-3
	:Q

	:E
	-1
	0
	0
	2
	-3
	2
	6
	-3
	0
	-4
	-3
	1
	-2
	-3
	-1
	-1
	-1
	-3
	-2
	-3
	:E

	:G
	0
	-3
	0
	-1
	-3
	-2
	-3
	8
	-2
	-4
	-4
	-2
	-3
	-4
	-2
	0
	-2
	-3
	-3
	-4
	:G

	:H
	-2
	0
	1
	-1
	-3
	1
	0
	-2
	10
	-4
	-3
	0
	-1
	-1
	-2
	-1
	-2
	-3
	2
	-4
	:H

	:I
	-1
	-4
	-3
	-4
	-2
	-3
	-4
	-4
	-4
	5
	2
	-3
	2
	0
	-3
	-3
	-1
	-3
	-1
	4
	:I

	:L
	-2
	-3
	-4
	-4
	-2
	-2
	-3
	-4
	-3
	2
	5
	-3
	3
	1
	-4
	-3
	-1
	-2
	-1
	1
	:L

	:K
	-1
	3
	0
	-1
	-3
	2
	1
	-2
	0
	-3
	-3
	6
	-2
	-4
	-1
	0
	-1
	-3
	-2
	-3
	:K

	:M
	-1
	-2
	-2
	-4
	-2
	0
	-2
	-3
	-1
	2
	3
	-2
	7
	0
	-3
	-2
	-1
	-1
	0
	1
	:M

	:F
	-3
	-3
	-4
	-5
	-2
	-4
	-3
	-4
	-1
	0
	1
	-4
	0
	8
	-4
	-3
	-2
	1
	4
	-1
	:F

	:P
	-1
	-3
	-2
	-1
	-4
	-1
	-1
	-2
	-2
	-3
	-4
	-1
	-3
	-4
	10
	-1
	-1
	-4
	-3
	-3
	:P

	:S
	1
	-1
	1
	0
	-1
	0
	-1
	0
	-1
	-3
	-3
	0
	-2
	-3
	-1
	5
	2
	-4
	-2
	-2
	:S

	:T
	0
	-1
	0
	-1
	-1
	-1
	-1
	-2
	-2
	-1
	-1
	-1
	-1
	-2
	-1
	2
	5
	-3
	-2
	0
	:T

	:W
	-3
	-3
	-4
	-5
	-5
	-1
	-3
	-3
	-3
	-3
	-2
	-3
	-1
	1
	-4
	-4
	-3
	15
	2
	-3
	:W

	:Y
	-2
	-1
	-2
	-3
	-3
	-1
	-2
	-3
	2
	-1
	-1
	-2
	0
	4
	-3
	-2
	-2
	2
	8
	-1
	:Y

	:V
	0
	-3
	-3
	-4
	-1
	-3
	-3
	-4
	-4
	4
	1
	-3
	1
	-1
	-3
	-2
	0
	-3
	-1
	5
	:V

	*
	* A
	R
	N
	D
	C
	Q
	E
	G
	H
	I
	L
	K
	M
	F
	P
	S
	T
	W
	Y
	V
	*

Note the high scores for a substitution of an amino acid to self (the diagonal elements of the matrix). Note also that certain amino acids have higher tendency for self-preservation (e.g. Cysteine) while a small and polar amino acid like threonine can be substituted to other amino acids more easily. The detailed construction of the substitution matrix is of significant interest and is discussed later in the section: Learning scoring parameters. Concerning the goals of the present section we still need to choose the pairs to calculate the similarity score. Can we just pick pairs of amino acids from the pools of residues that each protein makes?

Of course, the choice of pairs of amino acids from
[image: image37.wmf]A

 and
[image: image38.wmf]B

 is not completely free. The order of the amino acids in the sequence (the primary “structure” of the protein) counts, and our comparison should maintain that order. This is a significant restriction on the comparisons that we may make and limits our choices considerably. Adding further to the complexity of the problem is the observation that not all proteins are of the same length; we need to account for variation in the lengths of the proteins and for the fact that some amino acids will not have corresponding amino acids to match. Two closely related proteins may be different at a specific site in which an amino acid was added to one protein but not to the second. To describe such cases we introduce a “gap” residue. A gap residue is denoted by “-“ and is used to indicate an empty space along the sequence. For example, the comparison of two proteins below (PDB codes 1rsy and 1a25_A) yields the following optimal arrangement of the two sequences with gaps:

TABLE: Optimal alignment of two sequences (top is 1rsy, Synaptotagmin I (First C2 Domain) , lower 1a25, Protein Kinase C ([image: image39.png]

); Chain: A). The percentage of sequence identity is 33 percent.

EKLGKLQYSLDYDFQNNQLLVGIIQ-AAEL-PALDMGGTSDPYVKVFLLPD-K-KKKFE

ERRGRIYIQAHID-R--EVLIVVVRDAKNLVP-MDPNGLSDPYVKLKLIPDPKSESKQK

TKVHRKTLNPVFNEQFTFKVPYSELGGKTLVMAVYDFDRFSKHDIIGEFKVPMNTVD-F
TKTIKCSLNPEWNETFRFQLKESDKD-RRLSVEIWDWDLTSRNDFMGSLSFGISELQKA

GHVTEEWRDLQS

G-V-DGWFKLLS

A gap is placed in one sequence (say
[image: image40.wmf]A

) to match an amino acid in the second sequence (say
[image: image41.wmf]B

). It indicates a missing amino acid in the
[image: image42.wmf]A

 sequence when comparing it to the
[image: image43.wmf]B

 sequence. Note that it is not possible for us to decide if an amino acid was deleted from
[image: image44.wmf]A

 or added to
[image: image45.wmf]B

, without a detailed evolutionary mechanism linking the two proteins to a common ancestor. It is therefore common to use the term indel to describe a gap (indel = an INsertion or a DELetion), a name that remains undecided about the mechanism of gap formation.

Our goal is to find the best match between two sequences including the possibilities of gaps. In order to score a given alignment and decide if it is good or bad we need a score for an indel.

What is the score of the gap, i.e. the alignment of an indel against another amino acid? It is philosophically useful to think on a gap as an ordinary amino acid and ask what is the score for substituting an amino acid type “
[image: image46.wmf]a

” with an amino acid type “
[image: image47.wmf]-

”. Such an approach is good in theory and there are some studies following this line of investigation. Unfortunately so far, determining gap scores (also called gap penalties) is still an open question. This difficulty is in contrast with the substitution matrices of amino acids that are pretty well established. A common practice in alignment programs is to leave the gap energy as a parameter to be determined by the user, setting a default value of (for example) zero. The score of a gap influences the alignment. If it is set too low, it is difficult to match related proteins of considerable variation in lengths (remote homologous proteins). If it is set too high, two vastly different proteins may get fragmented to many small overlapping pieces and a large number of gaps. The fragmented alignment (with high gap scoring) may still maintain a good score. We expect that proteins are related if a substantial fraction of the two sequences is similar.

High-scoring short-sequence segments can be analyzed statistically to determine their significance. In fact such an analysis is behind the popular BLAST algorithm [x]. To the first order BLAST does not consider gaps at all. A statistical test determines if short compatible segments of aligned sequences are significant. In some sense, BLAST solves the gap problem by avoiding it all together. The BLAST algorithm will be discussed in the section: Approximate alignments.

A typical practical solution for the indel/gap penalty is to give it a single negative value, say
[image: image48.wmf]g

, regardless of the pairing amino. The gap penalty is set to be independent of the type of the amino acid it is aligned to (e.g. the pair
[image: image49.wmf]/

W

-

 score the same as the pair
[image: image50.wmf]/

G

-

). This choice is non intuitive since
[image: image51.wmf]W

 (tryptophan) is much larger than
[image: image52.wmf]G

 (glycine). The space left for the “-“ residue by the removal of
[image: image53.wmf]G

 or
[image: image54.wmf]W

 will be therefore different and the cost likely to be dissimilar. The less detailed treatment of gaps, (compared to usual amino acids), can lead to poor alignments. Therefore a few suggestions of extending the simple model of gap penalty were proposed.

One popular model is to differentiate between opening and extension of gaps. It is based on the argument that gaps should aggregate together. Claims were made that insertions and deletions are likely to appear at certain structural domains of proteins (mostly loops). The concentration at few structural sites makes the indels appear together, and aggregate. To maximize the size of groups of gap (and minimize the number of gap clusters), two gap penalties are assigned. One penalty is for initiating a gap group. A second (lower penalty) is for growing an existing gap cluster. For example, (we construct our alignment from left to right), extending an alignment from
[image: image55.wmf]/

XX

 to
[image: image56.wmf]/

XXX

-

 is less favorable than the extension of the pair
[image: image57.wmf]/

X

-

 to
[image: image58.wmf]/

XX

--

. This is regardless of the fact that in both cases the same pair
[image: image59.wmf](

)

/

X

-

 was added to an existing alignment.

This model improves the overall appearance of the alignments. However, the present author is not enthusiastic about it. It is highly asymmetric with respect to other “amino acids” (remember, we would like to consider a gap to be an amino acid), and it is not obvious that the asymmetry is indeed required. It is also making the identification of optimal alignment messier. Alternative modeling of gaps (so far less popular) will be discussed later and include structural dependent gap. For the moment we shall concentrate on the simplest model of gaps (one value does it all), and after solving that problem the effect of the extensions will be examined.

We wish to place the gaps in such a way that the alignment or the comparison of the two sequences will be “optimal”. Early studies of sequence comparisons found optimal alignments manually. Gaps were inserted “by hand” into positions that made biochemical sense and increased the number of good-looking pairs [x]. For an implementation on the computer we consider an optimal alignment to be an arrangement of the two sequences with respect to each other in such a way that the total score of the alignment is as high as possible.

Let us examine in more details the problem of optimal alignments and possible arrangements of sequences. There are many ways of aligning a sequence
[image: image60.wmf]A

 against a sequence
[image: image61.wmf]B

 once gaps are introduced (even if the original order of the amino acids is maintained). Gaps can enter anywhere and in wide range of numbers in the alignment, creating many alternative arrangements. We denote the extended sequences of
[image: image62.wmf]A

 and
[image: image63.wmf]B

 (with gaps) as
[image: image64.wmf]A

 and
[image: image65.wmf]B

. For example,
[image: image66.wmf]A

 might be
[image: image67.wmf]1234

...

n

Aaaaaa

=---

. The introduction of the extended sequences raises another intriguing question, what is the length of the sequences
[image: image68.wmf]A

 (or
[image: image69.wmf]B

)?

Of course, the lengths may vary, but they still have upper bounds. Consider two sequences
[image: image70.wmf]A

and
[image: image71.wmf]B

 of the same length --
[image: image72.wmf]n

. The maximum length of
[image: image73.wmf]A

 and
[image: image74.wmf]B

 should be
[image: image75.wmf]2

n

. In the alignment of the extended-sequences that are also maximally long every amino acid of
[image: image76.wmf]A

 or
[image: image77.wmf]B

 is aligned against a gap --
[image: image78.wmf](

)

/

a

-

 and
[image: image79.wmf](

)

/

b

-

. An increase of the length beyond the
[image: image80.wmf]2

n

 limit will necessarily include an alignment of an indel with respect to another indel, i.e.
[image: image81.wmf](/)

--

. Such an alignment does not make sense from a scientific point of view. We have no way to determine the number of “double gaps” or their locations. Moreover, also from a technical view point there is a problem if the
[image: image82.wmf](/)

--

 pair generates a favorable plausible score. Consider the alignment

[image: image83.wmf]11

11

...

...

nn

nn

aaa

bbb

-

-

--

--

Let the total score be
[image: image84.wmf]AB

T

. Extending the above alignment by one more pair of indels, we have

[image: image85.wmf]11

11

...

...

nn

nn

aaa

bbb

-

-

--

-

--

-

The new score is
[image: image86.wmf]/

AB

TS

--

+

 where
[image: image87.wmf]/

S

--

 is the element of the substitution matrix replacing an indel by an indel. If the new score is better than
[image: image88.wmf]AB

T

, it is trivial to construct even a better alignment (and score) by adding yet another pair of indels with yet a better score of
[image: image89.wmf]/

2

AB

TS

--

+×

. The favorable extension with indels can proceed to infinite and is unbound. We eliminate in our sequence-to-sequence alignments the possibility of
[image: image90.wmf](

)

/

--

.

Ok. It is settled then, the maximum length of
[image: image91.wmf]A

 is
[image: image92.wmf]2

n

. How many possible alignments (with gaps) do we have? Or how many we need to examine before deciding on an optimal alignment?

1.2 Counting alignments

To count the number of possible alignments, and as a starting point of the discussion on optimal alignments, we consider the dynamic matrix. The dynamic matrix is a table used for the alignment of two sequences. Below we provide one example for two sequences with the same length (
[image: image93.wmf]5

n

=

). The rows are associated with the
[image: image94.wmf]A

 sequence and the columns with the
[image: image95.wmf]B

. The numbers at different matrix entries will be explained below.

[image: image96.wmf]12345

1

2

3

4

5

11111

1357911

1513254161

172563129231

1941129321681

111612316811683

aaaaa

b

b

b

b

b

-

-®®®®®

¯¯¯¯¯¯

®®®®®

¯¯¯¯¯¯

®®®®®

¯¯¯¯¯¯

®®®®®

¯¯¯¯¯¯

®®®®®

¯¯¯¯¯¯

®®®®®

\\\\\

\\\\\

\\\\\

\\\\\

\\\\\

The hairy picture with the numerous arrows is actually telling. Paths in this table, which start at the upper left corner and end at the right lower corner, present all the possible alignments of the two sequences. From each entry in the dynamic matrix, there are three alternative moves: following the diagonal, going down or moving to the right. A step in the matrix, which is a part of a legitimate alignment, never proceeds from left to right or up. For example, the thick line in the above matrix corresponds to the alignment:

[image: image97.wmf]12345

12345

aaaaa

bbbbb

-

-

A move along a diagonal aligns an amino acid against another amino acid. A vertical step in the matrix aligns a “
[image: image98.wmf]b

” amino acid against an indel and a horizontal step puts a gap against an “
[image: image99.wmf]a

” amino acid. Note that we use “
[image: image100.wmf]-

” for the gap “residue” (or an indel).

The numbers at the different entries of the table denote the number of paths (alignments) that can reach this point. For example, there are 5 possible alignments of
[image: image101.wmf]12

aa

 against
[image: image102.wmf]1

b

 (check the table element at the cross between
[image: image103.wmf]2

a

 and
[image: image104.wmf]1

b

). They are:

[image: image105.wmf]1212121212

11111

(1) (2) (3) (

4) (5)

aaaaaaaaaa

bbbbb

The last three alignments are essentially the same and are degenerate. At present, we consider all paths, including the degenerate paths. In the Appendix a clever counting protocol (by Dr. Jaroslaw Meller) is outlined that estimates the number of non-degenerate paths. Interestingly, the exact number of non-degenerate paths is
[image: image106.wmf]nm

m

+

æö

ç÷

èø

. It has the same asymptotic behavior as the approximate lower-bound expression we sketched below for the number of all paths.

Another interesting property of this table is a summation rule and the possibility of constructing a recursion formula for the number of alignments. There are three ways (“sources”) to extend a shorter alignment to obtain one of the five longer alignments listed above. (a) Extend an earlier alignment by the pair
[image: image107.wmf](

)

21

/

ab

, a diagonal move in the above table. Alternatively, (b) the pairs
[image: image108.wmf](

)

2

/

a

-

 or (c)
[image: image109.wmf](

)

1

/

b

-

 (horizontal or perpendicular moves in the above table) can be used to extend a shorter alignment and to obtain a member of the above group.

Each of the three “sources”
[image: image110.wmf](

)

(

)

ac

-

 has its own position in the matrix with a corresponding number of alignments. For example, before adding the pair
[image: image111.wmf](

)

21

/

ab

 we were at a table entry aligning
[image: image112.wmf]1

a

 against
[image: image113.wmf]""

-

. We find that there is only one-way of aligning
[image: image114.wmf]1

a

 against a gap and “1” is indeed the corresponding entry.

Another example of extending the alignment is to add a gap against
[image: image115.wmf]2

a

, which means that our earlier position in the table was the alignment of
[image: image116.wmf]1

a

 and
[image: image117.wmf]1

b

. The last alignment can be done in three different ways and therefore the table entry is “3” (
[image: image118.wmf]111

111

aaa

bbb

--

--

).

If we add the number of paths starting at the previous three “sources” and leading to the alignment of
[image: image119.wmf]12

aa

 with respect to
[image: image120.wmf]1

b

 we obtain
[image: image121.wmf]1135

++=

, exactly the number of alignments of our target.

To summarize the above empirical observations more precisely:

The number of possible alignments of
[image: image122.wmf]n

[image: image123.wmf]a

-s against
[image: image124.wmf]m

[image: image125.wmf]b

-s is defined as
[image: image126.wmf](,)

Nnm

, this number can be determined using the recursive formula
[image: image127.wmf](,)(1,1)(1,)(,1)

NnmNnmNnmNnm

=--+-+-

, and the initial conditions
[image: image128.wmf](0,0)(0,)(,0)1

NNmNm

===

. Note that the definition of
[image: image129.wmf](0,0)

N

 was done for computational convenience and it does not imply that “nothing” against “nothing” can be aligned in exactly one way.

While this formula can be used directly, it is useful to have an order-of-magnitude estimate of the number of alignments. This estimate is especially useful if we are planning a computation that will enumerate all of the alignments. If a calculation is not feasible with existing computer resources it is better knowing that it is not feasible in advance, and not after a few weeks of futile attempts to execute the desired computation.

A simple lower bound for
[image: image130.wmf](,)

Nnm

 can be obtained quickly.
[image: image131.wmf](,)

Nnm

 is a positive number, so we can write
[image: image132.wmf](,)(1,)(,1)

NnmNnmNnm

>-+-

 (we “forgot” for convenience the term
[image: image133.wmf](1,1)

Nnm

--

 in the original equality). So, the alternative recursion formula
[image: image134.wmf](

)

'(,)'(1,)',1

NnmNnmNnm

=-+-

 (with the same initial conditions as for
[image: image135.wmf](,)

Nnm

) always yields lower numbers than
[image: image136.wmf](,)

Nnm

. For
[image: image137.wmf]'(,)

Nnm

 we have a close expression:
[image: image138.wmf](

)

!

'(,)

!!

nm

nm

Nnm

m

nm

+

+

æö

==

ç÷

èø

. This formula is easy to verify by direct substitution of the closed expression to the recursion. Note that this is the same as the (exact) result derived by Meller for non-degenerate paths (Appendix).

We now make use of Stirling formula:
[image: image139.wmf][

]

(

)

log!log

nnnn

»-

 [x], valid for large
[image: image140.wmf]n

-s.

The logarithm of the number of alignments
[image: image141.wmf]'(,)

Nnn

 is estimated as

[image: image142.wmf](

)

[

]

(

)

(

)

(

)

2

(2)!

loglog2!2log!2log222log22log2

(!)

n

nnnnnnnnn

n

éù

=-»×--+=

éù

êú

ëû

ëû

And the lower bound for the number of alignments is
[image: image143.wmf](

)

2

',2

n

Nnn

»

. For a short protein (
[image: image144.wmf]50

n

»

;
[image: image145.wmf]30

1.2710

N

»×

) the number is substantial and is beyond what we can do today in a systematic search. Even if the computation of a single alignment requires a nanosecond (
[image: image146.wmf]9

10

-

 second), which is unrealistically fast, it still necessary to use
[image: image147.wmf]2113

10sec10years

»

 to examine all possible alignments.

If this is not impressive enough, remember that this is a lower bound and the precise counting of all paths will yield a number significantly larger than this one. For example, for
[image: image148.wmf]5

n

=

 we have
[image: image149.wmf]10

21024

=

 already a number significantly lower than the exact number in the table (1683). Hence, this underlines the statement that it is impossible to examine all alignments one by one.

Readers with a background in structural biology may recall the Levinthal paradox in protein folding. The paradox contrasts the huge number of plausible protein conformations and the efficiency in which proteins fold. However, as we see below a large space to search does not necessarily mean that optimization in that space is difficult. It is not obvious that the optimization must be performed at a cost proportional to the volume of that space. In fact it can be profoundly cheaper.

1.3 Dynamic programming and optimal alignments
After this long detour, it is about the time to return to the basic question: What is the optimal alignment of
[image: image150.wmf]A

 and
[image: image151.wmf]B

? The score matrix and the gap penalty are provided and we need is to fish out the alignment(s) with the highest overall score(s). This is a point in which algorithms developed by computer scientists can be extremely useful. The fact that the number of possible alignments is exponentially large in the sequence length does not mean that the search for the optimal alignment needs to be done in exponential time. Sequence alignments can be done with dynamic programming, an algorithm that requires only
[image: image152.wmf]2

n

 operations to find the alignment with the best score, a remarkable saving compared to
[image: image153.wmf]2

2

n

 operations.

The efficient search for the optimal alignments consists of two steps. In the first step a dynamic matrix is constructed and in the second step an optimal path is found in the table just constructed. The first step is similar to the counting of possible alignments and the recursive expression we wrote to compute the total number of alignments. We denote the optimal score of the alignment of a sequence length
[image: image154.wmf]n

 against a sequence with length
[image: image155.wmf]m

 by
[image: image156.wmf](

)

,

Tnm

, and consider the following question:

 Assuming that a very kind fellow gave us the optimal scores for the following alignment:
[image: image157.wmf](

)

1,1)

Tnm

--

,
[image: image158.wmf](

)

1,

Tnm

-

,
[image: image159.wmf](

)

,1

Tnm

-

, can we construct the score
[image: image160.wmf](

)

,

Tnm

?

The answer is yes. Since the total score is given by a sum of the scores of the individual aligned pairs, we construct the score
[image: image161.wmf](

)

,

Tnm

 from the three alignments leading to it. We consider three possibilities to obtain an alignment of
[image: image162.wmf]n

 against
[image: image163.wmf]m

 amino acids.

Option a: Align
[image: image164.wmf]1

n

-

 against
[image: image165.wmf]1

m

-

 amino acids (this alignment has the known optimal score of
[image: image166.wmf](

)

1,1

Tnm

--

). Extend it by the alignment of
[image: image167.wmf]/

nm

ab

 with a score of
[image: image168.wmf](,)

nm

Sab

 which is the substitution score according to the types of the amino acids at
[image: image169.wmf]n

a

 and
[image: image170.wmf]m

b

 (e.g., the BLOSUM matrix). Hence the first suggestion for an optimal score is
[image: image171.wmf](

)

(

)

1,1,

nn

TnmSab

--+

.

Option b: Align
[image: image172.wmf]n

 amino acids against
[image: image173.wmf]1

m

-

 amino acids. This alignment also has a known score, which is
[image: image174.wmf](,1)

Tnm

-

. Extend this alignment by
[image: image175.wmf]/

m

b

-

 with a corresponding score
[image: image176.wmf]g

 for a gap. The second possibility for an optimal alignment is therefore
[image: image177.wmf](

)

,1

Tnmg

-+

.

Option c: Align
[image: image178.wmf]1

n

-

 amino acids against
[image: image179.wmf]m

 amino acids with the known (optimal) score of
[image: image180.wmf](

)

1,

Tnm

-

. Extend the alignment, by adding
[image: image181.wmf]/

n

a

-

 with a corresponding score of
[image: image182.wmf]g

. The third suggestion is therefore
[image: image183.wmf](

)

1,

Tnmg

-+

.

Note that we use the simple model of gaps in which only a single score is associated with an indel, regardless of the amino acid it is aligned against.

Our final task is to select the highest score from one of the three alternatives:

[image: image184.wmf](

)

(

)

1,1,

nn

TnmSab

--+

,
[image: image185.wmf](

)

,1

Tnmg

-+

,
[image: image186.wmf](

)

1,

Tnmg

-+

, which is the optimal score of
[image: image187.wmf](

)

,

Tnm

.

More compactly, we write:
[image: image188.wmf](

)

(

)

(1,1),

,max(,1)

(1,)

nm

TnmSab

TnmTnmg

Tnmg

--+

éù

êú

=-+

êú

êú

-+

ëû

The above recursion can be used to fill with optimal scores the complete dynamic matrix. We start with the condition
[image: image189.wmf](

)

(

)

1,,1

TTg

-=-=

 and use the initial values to grow the matrix. For example,
[image: image190.wmf](

)

(

)

(

)

(

)

(

)

(

)

1

111

1111

,2

,max,max2

0,0,,

Tagg

TabTbgg

TSabSab

-+

éùéù

êúêú

=-+=

êúêú

êúêú

+

ëûëû

Where
[image: image191.wmf](

)

0,0

T

 denotes alignment of nothing that (not surprisingly) scores zero. Another simple example is of
[image: image192.wmf](

)

(

)

,

Tnnng

-=×

. Hence, there is only one alignment against “all gaps” arrangement, providing us with immediate optimal scores for the first row and column of the dynamic matrix. It is also clear that similarly to the direct counting of the number of paths we can also construct all the optimal scores.

[image: image193.wmf]12345

1

2

3

4

5

02345

\

2

3

4

5

aaaaa

ggggg

bg

bg

bg

bg

bg

-

-®®®®®

¯¯¯¯¯

®®®®®

¯¯¯¯¯

®®®®®

¯¯¯¯¯¯

®®®®®

¯¯¯¯¯¯

®®®®®

¯¯¯¯¯¯

®®®®®

\\\\

\\\\\

\\\\\

\\\\\

\\\\\

A simple pseudo code to create the dynamic matrix is given below

/* fill the first (zero) column and the first (zero) row */

T(0,0) = 0

Do I=1:n

T(I,0) = I*g

End do

Do I=1:m

T(0,I) = I*g

End do

/* Now fill the rest of the matrix picking the maximum value

from the three possibilities */

Do I = 1:n

 Do J = 1:m

 T(I,J) = max[T(I-1,J)+g,

 T(I,J-1)+g,

 T(I-1,J-1)+S(a(i),b(j))]

 End do

End do

Actually, if we are primarily interested in the score of the alignment of
[image: image194.wmf]1

...

n

Aaa

=

 with respect to
[image: image195.wmf]1

...

m

Bbb

=

 only a single element of the dynamic matrix,
[image: image196.wmf](,)

Tnm

, is of interest. Of course, in order to get at it we need to compute first the whole matrix. However this score, which is recorded at the lower right side of the dynamic matrix, is only part of the story.

Besides the score, in many cases, it is important to know the alignment itself. The path in the dynamic matrix that corresponds to the optimal alignment can be found by a trace-back procedure. Starting from
[image: image197.wmf](

)

,

Tnm

 we ask “which of the three possible steps could have generated the final optimal score? That is, we examine the three possibilities

[image: image198.wmf](

)

(

)

(

)

?

,(1,1),

?

,(1,)

?

(,)(,1)

nm

TnmTnmSab

TnmTnmg

TnmTnmg

=--+

=-+

=-+

For at least one of the tests above the equality will hold. It is possible that more than one test is correct and in that case the optimal alignment is degenerate. Hence, there is more than one alignment that provides an optimal score. Usually we consider only one path. For example, if the first test is correct the alignment ends with the pair:
[image: image199.wmf]n

m

a

b

 and we repeat the three tests to find the next path segment, this time starting from
[image: image200.wmf](

)

1,1

Tnm

--

. The process is repeated until it reaches the upper left corner and provides the desired optimal alignment. The maximum number of times that the process is repeated is
[image: image201.wmf]nm

+

 (all the steps are horizontal or vertical) and the smallest number of steps is either
[image: image202.wmf]n

 or
[image: image203.wmf]m

, the larger number of the two.

We are also ready for a rough estimate of the computational effort. As we discussed earlier a lower bound on the number of possible alignments is
[image: image204.wmf]2

nm

+

. Examining all possible alignments will require computational effort that is growing exponentially with
[image: image205.wmf]nm

+

. The computations that we just described, using dynamics programming, are much cheaper. Let us consider the two steps separately. In the first step we create the dynamic matrix
[image: image206.wmf](

)

,

Tnm

. To generate a single element we need (about) four operations: Evaluating three expressions, and a decision which of the three is the largest. The calculation of a single element is therefore independent of
[image: image207.wmf]n

or
[image: image208.wmf]m

, and the cost associated with the computation of the matrix is proportional to
[image: image209.wmf]nm

×

 (the number of matrix elements). To trace the path of alignment (once the matrix is known) takes a maximum of
[image: image210.wmf]nm

+

 operations.

Something to think about…

(*.1) We wish to align simultaneously the three sequences
[image: image211.wmf]1

...

n

Aaa

=

;
[image: image212.wmf]1

...

m

Bbb

=

 and
[image: image213.wmf]1

...

l

Ccc

=

. A sequence of ordered triplets defines the alignment. Each triplet is of the form
[image: image214.wmf]a

b

c

 where
[image: image215.wmf]a

 (for example) is either an amino acid or an indel. A maximum of two gaps is allowed in a triplet. What is the minimum and maximum lengths of an alignment? Write a recursion relation for the number of alignments. Compute the number of alignment for the special case in which
[image: image216.wmf]5

nml

===

.

Gap opening and extension
An empirical expectation from gaps is that they should aggregate. Structurally, proteins are characterized by secondary structure elements, as helices or sheets, linked by loops. The loops are less defined structurally and are more exposed to solvent. We expect gaps to appear in loops since changes in loops have a smaller effect on the global shape. One way to induce this tendency is to make the gap score structure dependent. Structural dependent gap penalty will require a reasonably reliable structural model and is therefore not available for all sequences.

The alternative for modeling gaps, which is quite popular, is to introduce different penalties for gap opening
[image: image217.wmf]o

g

 and gap extension
[image: image218.wmf]e

g

. The gap extension is set less costly than gap opening. For a fixed number of gaps the preferred arrangements of the gaps is in one or a few big clusters.

A schematic drawing of a protein shape is shown that consists of a two-helix bundle and a loop. It is expected that the indels will concentrate at the loop region.
Unfortunately the two types of gaps complicated our simple and elegant dynamic programming protocol. The problem is that extending the alignment with different types of gaps has a memory. If we consider adding a gap to an existing alignment we need to check that in the previous step we did not have an indel already. If we did, the gap penalty of the extra indel will be
[image: image219.wmf]e

g

, if we did not the gap penalty will be
[image: image220.wmf]o

g

. Hence in contrast to the earlier dynamic programming protocol the penalty depends on more than just the current pair of aligned characters. For example

[image: image221.wmf]2121

nn

mmmmm

aa

bbbbb

®

 with a gap penalty of
[image: image222.wmf]e

g

. Or

[image: image223.wmf]11

2121

nnnn

mmmmm

aaaa

bbbbb

--

-

®

 with a gap penalty of
[image: image224.wmf]o

g

We cannot just extend our state to include two pairs since we will not know if the pair of gaps
[image: image225.wmf]1

mm

bb

+

--

 was just opened or an extension of yet a previous gap. We need to think on three(!) dynamic matrices, or three score functions.

We ask how is it possible to obtain the optimal score (and the alignment)
[image: image226.wmf](

)

,

Tnm

. Consider what we are facing now. As before in order to complete the alignment we need to consider the addition of three possible pairs: the pair
[image: image227.wmf]n

m

a

b

,
[image: image228.wmf]n

a

-

, or
[image: image229.wmf]m

b

-

 to complete an alignment to an
[image: image230.wmf](

)

,

nm

 alignment. Unfortunately, and in contrast to the simple dynamic matrix we had before, we cannot forget what the previous alignments were. The tails of the prior alignments (with
[image: image231.wmf](

)

1,1

nm

--

) have three options of their own:

[image: image232.wmf]1

1

11

......

...

(1) (2) (3)

......

...

n

n

mm

a

a

bb

-

-

--

-

-

Matching three against three creates nine possibilities (in principle). Let us consider a few of them. Adding the pair
[image: image233.wmf]n

m

a

b

 is actually quite straightforward, we do not have to think on gap extension or opening, simply adding to the current optimal scores of (1)-(3) the score
[image: image234.wmf](

)

,

nn

Sab

. More interesting are the additions of the pairs
[image: image235.wmf]n

a

-

 or
[image: image236.wmf]m

b

-

 to (1)-(3). Again we have no problem with extending the optimal alignment (1), since it includes no gaps. However, the pairs that include gaps are more complicated. For example, adding
[image: image237.wmf]n

a

-

 to (2) will have a different score than adding the same pair to (3). This observation means that the optimal score depends on what we attach to it. Lucky for us the extent of the memory is for just one pair. We therefore define three optimal scores depending on the presence/absence (and the up/down location) of a gap at the right edge of the alignment:
[image: image238.wmf](

)

(

)

(

)

(

)

(

)

1, (2), 3,

TnmTnmTnm

-

-

 As the names suggest the first optimal score is a function than ends with a pair of amino acids, the second option with a gap aligned against
[image: image239.wmf]n

a

, and the third option with a gap aligned against
[image: image240.wmf]m

b

.

[image: image241.wmf](

)

(

)

(

)

(

)

,(,)

1,1max,(,)

,(,)

nn

nn

nn

TnmSab

TnmTnmSab

TnmSab

-

-

+

ìü

ïï

++=+

íý

ïï

+

îþ

The addition of the pair
[image: image242.wmf]n

a

-

 helps to define the recursive relationship for
[image: image243.wmf](

)

1,1

Tnm

-

++

[image: image244.wmf](

)

(

)

(

)

(

)

,

1,1max,

,

o

e

o

Tnmg

TnmTnmg

Tnmg

--

-

+

ìü

ïï

++=+

íý

ïï

+

îþ

And the final pair
[image: image245.wmf]m

b

-

 gives a similar recursive relationship

[image: image246.wmf](

)

(

)

(

)

(

)

,

1,1max,

,

o

o

e

Tnmg

TnmTnmg

Tnmg

--

-

+

ìü

ïï

++=+

íý

ïï

+

îþ

Local alignments

So far we considered alignment in which the complete
[image: image247.wmf]A

 sequence was aligned against the complete sequence of
[image: image248.wmf]q

B

. This procedure is also called global alignment. In a global alignment we account for all the amino acids, we may have added indels but we did not took away any of the different amino acids in
[image: image249.wmf]A

 or
[image: image250.wmf]q

B

. In other words, our paths in the dynamic matrix always started at the upper left corner and end at the lower right corner of the dynamic matrix.

We can imagine asking a different question for which global alignments are not important. For example, having a DNA sequence (a gene, say about 1000 basepairs) and searching for a relative in a whole genome (say, a million of basepairs). Aligning a single sequence against a large continuous string (sometimes only partially annotated) cannot be done with the procedure we just discussed. Another exercise that cannot be done with global alignment is the detection of similar domains. In numerous cases proteins share similar fragments (domains) while the rest of the structure (or sequence) is not similar. It is useful to identify these domains since they can serve as building blocks for a complete model of the protein, provide hints to the protein family, or suggest plausible biological activity (if the domain has characteristic activity). Alignments of fragments do not exclude the possibility that the whole protein sequences will be aligned, but we do not enforce it.

The schematic drawing of the backbone traces of the two proteins show a similar fragment (a helix and a
[image: image251.wmf]b

 strand). Clearly, the fragment similarity will not be detected by a global alignment.

To obtain a local alignment, and to enable the identification of similar fragment, we modify the creation of the dynamic matrix. For local alignment we have:

[image: image252.wmf](

)

(

)

(

)

(

)

0

(1,1),

,max

1,

,1

nm

TnmSab

Tnm

Tnmg

Tnmg

ìü

ïï

--+

ïï

=

íý

-+

ïï

ïï

-+

îþ

The newly added value of zero is used to terminate an alignment. If the extension of an alignment is not increasing the overall score, then it is better terminated here. Note that there is a specific assumption on the scoring matrix. The “random” hits of extending a sequence should not be positive on the average. Otherwise, the local alignment will increase without bound.

Also the search for the optimal alignment is modified. In global alignments we started our trace back procedure from the lower right corner of the matrix and searched for the optimal path until we hit the upper left corner. Local alignments do not necessarily start or end at the corners. The first step in determining the local alignment is the identification of the start. The start is a matrix entry with a high score. Then a trace back procedure, similar to global alignments, is used until we hit a global score of zero. This is a sign that we need to terminate this alignment and that we found the highest scoring fragment for
[image: image253.wmf]A

 and
[image: image254.wmf]q

B

[image: image255.wmf]12345

1

2

3

4

5

000000

0256

0089

0107

0582

0

0

aaaaa

b

b

b

b

b

-

-®®®®®

¯¯¯¯¯

®®®®®

¯¯¯¯¯

®®®®®

¯¯¯¯¯¯

®®®®®

¯¯¯¯¯¯

®®®®®

¯¯¯¯¯¯

®®®®®

\\\\\

\\\\\

\\\\\

\\\\\

\\\\\

A short path is charting a local alignment in a dynamic matrix. The maximum score is 10 and a trace back procedure provides us with the alignment
[image: image256.wmf]1234

123

aaaa

bbb

-

 . The above example of a local alignment ends at the upper left corner. However, similarly to the start of the alignment, there is no condition at its termination point.

In contrast to global alignment we added now one more operation (the search for the highest scoring element) that scales also as
[image: image257.wmf]nm

´

. Of course, the highest scoring element can be stored during the construction of the matrix, saving us the additional computation afterward.

Something to think about…

· Can you suggest a procedure that will use the generation of the dynamic matrix to speed-up the computation of the alignment path? The idea is to avoid the “if statement”, testing the sources of the optimal alignment.

· Suppose that
[image: image258.wmf]A

 represents one protein while
[image: image259.wmf]q

B

 is a whole genome. In that case we may wish to align the whole sequence
[image: image260.wmf]A

 against a fragment of
[image: image261.wmf]q

B

. How to design a “rule” to generate the appropriate dynamic matrix? Qualitatively, how the matrix will be different from global alignment, local alignment matrices?

Note that the optimal local alignment, which is defined as the highest scoring local alignment, is not necessarily the longest. It is probably worth checking also a few high scores to detect potentially longer alignment. In general the longer is the alignment the more significant it is likely to be using the statistical tests to be described later, even if it is not necessarily with the highest score.

Rough estimate of practical computational cost using dynamic programming

The “complexity” of the dynamic programming algorithm or the computational effort of applying it, is proportional to
[image: image262.wmf]2

n

 for large
[image: image263.wmf]n

-s. This is clearly much better that brute force counting of all the alignments that we discuss previously (the computational effort grows exponentially with
[image: image264.wmf]n

). Nevertheless dynamic programming can be still expensive, depending on the size of the problem at hand, and our resources, as discussed below.

Powerful and low cost Personal Computers (PCs) make one type of high performance computing, which is based on clusters of PC-s, more accessible. We therefore estimate the calculation time of typical alignments using “PC units”. An alignment of two proteins of average length (
[image: image265.wmf]200

n

=

) requires a tenth of a second on a 600MHz PC. Comparing a single sequence to a database of 100,000 proteins, takes 10,000 seconds or 2.8 hours. Of course, this time is getting longer if we wish to examine more than one sequence. The non-trivial computational efforts promoted the use of approximate algorithms [x] with a computational cost linear with the protein length. The two leading approximations are FASTA and BLAST. The approximate procedures will be discussed later in the section: Approximate alignments. The computational cost further promoted the use of special purpose hardware for rapid parallel alignments [x]. There is an on-going competition here between the rapid growth of computer resources and approximate algorithms. As the speed and capacity of computer increases, the option of finding the optimal alignment becomes more feasible.

Statistical verification of the results

Once we finished comparing our sequences to all other sequences in the database we have a “winner”. A sequence
[image: image266.wmf]q

B

 (or perhaps a few sequences) scores better than the other sequences in the database when aligned to
[image: image267.wmf]A

. The “winner” is our best guess for a relative (homologous protein) of the unknown target.

We should keep in mind that our database is limited. It does not contain all sequences, just our current sample in annotated sequence space. It is possible that none of the current reference proteins is homologous to the unknown sequence. Of course, we always get “best” scores. Every distribution has tails and the distribution of scores is no exception. It has a tail with highly scoring “winning” sequences. However, are these best scores of biological significance or just an arbitrary choice among other irrelevant possibilities? We need to measure the significance of the score of the winning alignment to differentiate a true hit from a random hit.

If we find that the “winner” is not significant, then either the database lacks relevant proteins, or our detection scheme is not sensitive enough.

We call a winning match -- a positive (signal). Positives, as discussed above, can be either true or false. The sequence
[image: image268.wmf]q

B

 with a high-score-alignment to
[image: image269.wmf]A

 may be a true relative of the unknown protein, or may be a false positive. How can we verify (to the extent possible) the significance of the score?

To differentiate between true and false hits we generate random sequences, score them, and compare them to the score of our winner. If our match is truly significant its score should be higher than the score of a random sequence aligned to the same probe,
[image: image270.wmf]q

B

.

So the plan is straightforward: generate a set of random sequences (called
[image: image271.wmf]{

}

1

S

s

s

R

=

) and examine their alignment to the
[image: image272.wmf]q

B

 match. The optimal alignment of each of the random sequences against
[image: image273.wmf]q

B

 gives a score. The “random” score should be significantly lower than the score of our match of
[image: image274.wmf]A

 to
[image: image275.wmf]q

B

, if the match is true.

How should we generate random sequences? I.e., what is the sample space that we should use? We can generate “novel” random sequences by sampling from the general pool of amino acids. We can even try to be reasonably clever and consider the natural frequencies of amino acids,
[image: image276.wmf]()

i

Pa

. It is the probability of observing an amino acid
[image: image277.wmf]i

 anywhere in the known databases of proteins. We may generate the random sequences in such a way that the frequencies of the amino acids in those random sequences will reproduce the natural frequencies. However, changing the chemical composition of the target protein (the distribution of types of amino acids within
[image: image278.wmf]A

) is problematic.

Clearly, sequences and alignments to
[image: image279.wmf]q

B

 can be found that will have higher scores than aligning
[image: image280.wmf]A

 against
[image: image281.wmf]q

B

. The self-alignment of
[image: image282.wmf]q

B

 is an example. However, we are interested in significance test for
[image: image283.wmf]A

. For that purpose we maintain the composition of the amino acid types in
[image: image284.wmf]{

}

1

S

s

s

R

=

to be the same as in
[image: image285.wmf]A

. The set of random sequences include all the proteins of the same length and the same amino acid composition as in
[image: image286.wmf]A

. For example if
[image: image287.wmf]1234

Aaaaa

=

, then a “random” sequence satisfying our criterion is
[image: image288.wmf]1423

Raaaa

=

. The process of generating random sequences with the same length and chemical composition is called sequence shuffling.

These random sequences avoid the problem of the weight of different amino acid types since they have the same composition as the
[image: image289.wmf]A

 sequence. In the next step each of the random sequences is optimally aligned against
[image: image290.wmf]q

B

 and their (optimal) score is computed. Note that the optimally aligned
[image: image291.wmf]s

R

 is not necessarily the same length as
[image: image292.wmf]A

.

The ensemble of random sequences (or more precisely their scores) is used in a convenient estimate of the significance of the
[image: image293.wmf]A

 alignment: The so-called
[image: image294.wmf]Z

 score, defined below

[image: image295.wmf]2

2

AB

TT

Z

TT

-

=

-

[image: image296.wmf]AB

T

 is the optimal score for the alignment of
[image: image297.wmf]A

 against
[image: image298.wmf]B

.
[image: image299.wmf]T

 is the optimal score averaged over the set of random sequences as described below, and
[image: image300.wmf]2

T

 is the second moment of the distribution of optimal scores of random sequences. The
[image: image301.wmf]Z

 score is a cleverly constructed function. First
[image: image302.wmf]AB

T

 is tested for being as far as possible from the average, or a typical score of a random sequence. This difference,
[image: image303.wmf]AB

TT

-

, has units. Changing those units will make the difference larger or smaller with no real modification of the underline data. To determine a dimensionless measure of the distance between
[image: image304.wmf]AB

T

 and
[image: image305.wmf]T

, we divide the difference by the width of the distribution. Hence, we are using the width of the distribution as a yardstick to determine appropriate units for the present distribution. The result is dimensionless but it is also a better measure of the significance of our alignment.

Consider for example a fixed difference
[image: image306.wmf]AB

TT

-

. If the width of the distribution greatly exceeds the difference, many random sequences will be found with better scores than
[image: image307.wmf]AB

T

. On the other hand, if the distribution is very narrow, even a small difference can bring us to the right (higher) edge of the score distribution function and make the prediction significant.

A schematic drawing of two distributions of random scores:
[image: image308.wmf]T

 is the value of the score, and
[image: image309.wmf]()

PT

is the probability of observing a given score. To keep the plot clear the distributions are not normalized. Each of the distributions has about the same average value
[image: image310.wmf]T

 but the width is significantly different. The dashed-line distribution is broader compared to the continuous thin line distribution. The “winning” score,
[image: image311.wmf]AB

T

, is denoted by an ellipse and a vertical line. Though the distance of the “winning” score from the average is the same in the two distributions, it is clearly more significant when compared to the thin line distribution. By more significant we mean that it is less likely to obtain the same score by chance, using a random sequence with the same amino acid composition.

The
[image: image312.wmf]Z

 score measure has also a weakness. It relies only two moments of the distribution. It is possible that the distribution will be highly asymmetric, and (or) far from a Gaussian. If this is indeed the case, the calculated position of
[image: image313.wmf]AB

T

 relative to the random sequences, may be inaccurate.

The
[image: image314.wmf]Z

 score is a measure of the quality of the alignment in addition to the score
[image: image315.wmf]T

. It is possible that two sequences will be rated differently by the score and by the statistical measure. Which of the two measures is more important? It is customary to use the
[image: image316.wmf]Z

 score as the more reliable measure for the significance of the alignment. It was found in practice that the statistical measure is more successful in filtering out false positives and promoting true “positives” that are not so high in the
[image: image317.wmf]T

 score scale. It is not completely clear to the present author why it is so, but computational experiments certainly support the above preference.

We are not done yet. We argued that for a sufficiently large value of the
[image: image318.wmf]Z

 score, the selection of
[image: image319.wmf]q

B

 as a match is significant. But how large is “sufficiently large”? We need to compute a probability function
[image: image320.wmf]()

C

PZZ

>

, which is the probability of finding a
[image: image321.wmf]Z

 score such that
[image: image322.wmf]C

ZZ

>

 by chance. If we are willing to accept one percent probability of a false positive then only
[image: image323.wmf]Z

scores that are equal or larger
[image: image324.wmf]C

Z

 such that
[image: image325.wmf]()0.99

C

PZZ

>>

 are acceptable. The function
[image: image326.wmf]()

C

PZZ

>

 is useful to have.

An elegant statistical theory provides the distribution of these scores using random sequences [S. Karlin and S.F. Altschul, Proc. Natl. Acad. Sci. USA 87,2264-2268(1990)]. It provides the answer to the question: What is the probability that a random sequence will have a
[image: image327.wmf]Z

score larger than
[image: image328.wmf]C

Z

. This may sound familiar, but there are a few subtle points. One should bear in mind that the extreme value distribution is not exactly on target here, even if the sentence sounds similar. First, the random alignments considered in the analytical theory do not have gaps. The random sequences do not necessarily have the same amino acid composition as
[image: image329.wmf]A

.

The alternative (which is more demanding computationally) is to avoid the analytical estimate and to compute the relevant distributions numerically, mimicking a true search procedure. That is, we attempt to match a set of sequences to unrelated sequences. Whatever the
[image: image330.wmf]T

 scores and the
[image: image331.wmf]Z

 scores of the optimal alignment, they are examples of false positives. Accumulating enough examples a histogram of frequencies of false positive values is constructed. Such estimates are intensive computationally, but they help us extract a distribution closer in spirit to the application. In this case the distribution
[image: image332.wmf](

)

C

PZZ

>

)

 is the probability of obtaining false positives with a
[image: image333.wmf]Z

 score higher than
[image: image334.wmf]C

Z

, using a set of experimental sequences, not a random sequence of our making. This calculation is done only once when we calibrate our model and can be used ever after. Provided that we sufficiently large training set, this approach is preferable to analytical estimates of
[image: image335.wmf](

)

C

PZZ

>

)

Once the distribution of false positive is established numerically, a reference can be made to its direct numerical form (or a fitted analytical form) for the calculation of an arbitrary alignment and assessment of its significance with the
[image: image336.wmf]Z

 score. A similar calculation can be done for true positives. In that case we hope that the true positive number are as large as possible, minimizing the overlap of the two distributions: Distributions of
[image: image337.wmf]Z

 scores for false and true positives. If we wish to be accurate we need to set the bar as far as possible from the distribution of false positive even if we miss a significant number of true hits. This is a compromise we constantly need to make, a compromise between sensitivity (picking weak signals), and accuracy (having high level of confidence in the results).

A schematic drawing of the probability density of
[image: image338.wmf]Z

 scores:
[image: image339.wmf](

)

(

)

CC

C

d

pZPZZ

dZ

=<

 for two cases. The dashed line is the distribution for false positives and the continuous line for true positive. The vertical lines indicate
[image: image340.wmf]Z

 score values for unknown sequences. The continuous vertical line is a high confidence alignment. The long dashed vertical line is an alignment for the braves (that may take it as true positive). The dotted line is a false positive. Ideally we wish the two distributions to be totally separated, in practice some overlap between the distributions is unavoidable. Good scoring functions will increase the distance between the false and true positives.

Note that in the above drawing we consider the probability density
[image: image341.wmf](

)

pZ

 and not the distribution
[image: image342.wmf]()

PZ

. It is clear from the overlap between the distribution that additional filters and test for statistical significance can be useful, since the probability of overlapping distribution decreases in higher dimensions. This is a general trend in prediction algorithm, adding more statistical tests to eliminate false positives, using rather weak criteria when selecting according to
[image: image343.wmf]T

 [x].

B1=b11……bn1

B2 (globin)

B3 ( protein)

B4=b14….bn4

Annotated sequences

A=a1…an	

Unidentified sequence

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

PAGE
2

_1040795141.unknown

_1041313278.unknown

_1042023074.unknown

_1042281257.unknown

_1056374036.unknown

_1056377400.unknown

_1073284742.unknown

_1073284813.unknown

_1073284845.unknown

_1073300679.unknown

_1073404559.unknown

_1073284851.unknown

_1073284823.unknown

_1073284796.unknown

_1073284689.unknown

_1073284724.unknown

_1073284682.unknown

_1056374114.unknown

_1056377394.unknown

_1056374044.unknown

_1042284812.unknown

_1042286629.unknown

_1042294018.unknown

_1056361439.unknown

_1056361453.unknown

_1042294840.unknown

_1042295024.unknown

_1042295184.unknown

_1042294872.unknown

_1042294038.unknown

_1042292899.unknown

_1042293932.unknown

_1042292093.unknown

_1042286427.unknown

_1042286197.unknown

_1042286220.unknown

_1042285152.unknown

_1042283360.unknown

_1042283491.unknown

_1042283926.unknown

_1042283453.unknown

_1042283024.unknown

_1042283173.unknown

_1042283005.unknown

_1042265026.unknown

_1042271795.unknown

_1042280567.unknown

_1042281247.unknown

_1042280589.unknown

_1042273648.unknown

_1042274317.unknown

_1042274531.unknown

_1042274306.unknown

_1042271804.unknown

_1042267779.unknown

_1042269789.unknown

_1042265032.unknown

_1042035013.unknown

_1042036071.unknown

_1042036803.unknown

_1042036568.unknown

_1042036764.unknown

_1042036554.unknown

_1042035834.unknown

_1042035966.unknown

_1042035703.unknown

_1042035784.unknown

_1042035024.unknown

_1042024713.unknown

_1042027162.unknown

_1042034921.unknown

_1042026498.unknown

_1042023315.unknown

_1042024666.unknown

_1042023280.unknown

_1042004885.unknown

_1042006993.unknown

_1042009998.unknown

_1042022538.unknown

_1042023037.unknown

_1042021963.unknown

_1042007116.unknown

_1042009610.unknown

_1042009943.unknown

_1042009980.unknown

_1042009904.unknown

_1042009396.unknown

_1042007102.unknown

_1042006288.unknown

_1042006834.unknown

_1042006974.unknown

_1042006338.unknown

_1042005048.unknown

_1042006191.unknown

_1042005015.unknown

_1042005028.unknown

_1042004894.unknown

_1041337258.unknown

_1041350432.unknown

_1041752572.unknown

_1041931651.unknown

_1041938554.unknown

_1042004875.unknown

_1041937987.unknown

_1041833130.unknown

_1041858167.unknown

_1041839512.unknown

_1041833096.unknown

_1041590882.unknown

_1041592029.unknown

_1041752557.unknown

_1041591453.unknown

_1041591724.unknown

_1041591913.unknown

_1041591439.unknown

_1041394201.unknown

_1041587086.unknown

_1041393899.unknown

_1041349733.unknown

_1041349979.unknown

_1041350073.unknown

_1041350362.unknown

_1041349862.unknown

_1041337438.unknown

_1041337569.unknown

_1041337323.unknown

_1041330422.unknown

_1041337157.unknown

_1041337166.unknown

_1041337201.unknown

_1041336975.unknown

_1041337127.unknown

_1041321973.unknown

_1041327033.unknown

_1041313439.unknown

_1041077780.unknown

_1041088534.unknown

_1041156620.unknown

_1041156959.unknown

_1041160189.unknown

_1041313256.unknown

_1041157639.unknown

_1041156656.unknown

_1041156884.unknown

_1041156638.unknown

_1041154456.unknown

_1041156453.unknown

_1041156562.unknown

_1041156448.unknown

_1041090139.unknown

_1041090341.unknown

_1041090358.unknown

_1041090528.unknown

_1041090202.unknown

_1041089680.unknown

_1041090111.unknown

_1041088679.unknown

_1041085388.unknown

_1041087232.unknown

_1041087745.unknown

_1041087765.unknown

_1041087264.unknown

_1041086522.unknown

_1041086888.unknown

_1041085503.unknown

_1041080453.unknown

_1041083284.unknown

_1041083318.unknown

_1041083212.unknown

_1041080176.unknown

_1041080447.unknown

_1041080159.unknown

_1040802281.unknown

_1040988883.unknown

_1040990857.unknown

_1040998543.unknown

_1041000912.unknown

_1041001270.unknown

_1041001397.unknown

_1041001408.unknown

_1041001275.unknown

_1041001323.unknown

_1041001093.unknown

_1041001175.unknown

_1041001057.unknown

_1040999433.unknown

_1041000807.unknown

_1040999371.unknown

_1040991954.unknown

_1040992363.unknown

_1040993096.unknown

_1040992307.unknown

_1040991058.unknown

_1040991601.unknown

_1040990865.unknown

_1040989460.unknown

_1040990722.unknown

_1040990744.unknown

_1040990712.unknown

_1040989481.unknown

_1040990674.unknown

_1040988943.unknown

_1040988953.unknown

_1040988892.unknown

_1040805939.unknown

_1040988748.unknown

_1040988763.unknown

_1040988847.unknown

_1040988855.unknown

_1040988770.unknown

_1040988757.unknown

_1040988602.unknown

_1040988660.unknown

_1040988722.unknown

_1040988741.unknown

_1040988703.unknown

_1040988651.unknown

_1040988587.unknown

_1040804859.unknown

_1040805125.unknown

_1040805308.unknown

_1040805460.unknown

_1040805298.unknown

_1040804884.unknown

_1040805061.unknown

_1040804622.unknown

_1040804704.unknown

_1040804828.unknown

_1040804064.unknown

_1040796382.unknown

_1040796445.unknown

_1040802166.unknown

_1040802211.unknown

_1040796485.unknown

_1040796408.unknown

_1040796416.unknown

_1040796389.unknown

_1040795588.unknown

_1040796060.unknown

_1040796184.unknown

_1040796045.unknown

_1040795512.unknown

_1040795520.unknown

_1040795469.unknown

_1040179765.unknown

_1040217897.unknown

_1040792798.unknown

_1040794031.unknown

_1040794881.unknown

_1040794891.unknown

_1040794040.unknown

_1040794790.unknown

_1040793003.unknown

_1040793389.unknown

_1040792811.unknown

_1040473991.unknown

_1040738276.unknown

_1040740483.unknown

_1040740512.unknown

_1040736501.unknown

_1040387033.unknown

_1040388072.unknown

_1040388082.unknown

_1040388656.unknown

_1040387094.unknown

_1040219058.unknown

_1040383285.unknown

_1040187961.unknown

_1040188346.unknown

_1040188586.unknown

_1040188729.unknown

_1040189692.unknown

_1040188552.unknown

_1040188564.unknown

_1040188379.unknown

_1040187998.unknown

_1040188105.unknown

_1040187981.unknown

_1040186465.unknown

_1040187109.unknown

_1040187953.unknown

_1040187099.unknown

_1040180225.unknown

_1040180349.unknown

_1040180216.unknown

_1040115743.unknown

_1040120549.unknown

_1040121191.unknown

_1040121614.unknown

_1040122972.unknown

_1040122982.unknown

_1040122358.unknown

_1040122440.unknown

_1040121305.unknown

_1040121318.unknown

_1040121296.unknown

_1040121178.unknown

_1040121183.unknown

_1040120564.unknown

_1040120491.unknown

_1040120518.unknown

_1040120535.unknown

_1040120496.unknown

_1040118727.unknown

_1040118738.unknown

_1040115755.unknown

_1040103517.unknown

_1040114999.unknown

_1040115411.unknown

_1040115423.unknown

_1040115016.unknown

_1040114927.unknown

_1040114941.unknown

_1040114915.unknown

_1040101881.unknown

_1040102432.unknown

_1040102465.unknown

_1040101987.unknown

_1040101995.unknown

_1040101896.unknown

_1040101608.unknown

_1040101843.unknown

_1040101577.unknown

