
CS 6241: Numerics for Data Science
Many Interpretations of Kernels

David Bindel

2025-03-04

Kernels

Kernels are key to many data analysis methods. A kernel is a function of two arguments, and
often we think of 𝑘(𝑥, 𝑦) as a measure of how similar or related the objects 𝑥 and 𝑦 are to each
other. But there are several stories we tell that describe different ways to think about kernels.
We discuss four such approaches in this lecture:

1. Kernels come from composing linear methods (e.g. linear regression) with feature maps,
nonlinear functions that map from the original function domain (say ℝ𝑛) into space
of much higher dimension (ℝ𝑁). In this story, the kernel represents an inner product
between feature vectors.

2. Kernels define basis functions for approximation spaces. Unlike some schemes to ap-
proximate from a fixed function space (e.g. low-degree polynomials), kernel methods are
adaptive, allowing more variation in regions of the function domain where we have more
data.

3. Kernels are associated with a quadratic form on a space of functions, which we think of as
“energy.” Sometimes, as in the case of cubic splines and thin plate splines, the energy and
kernel methods for regression minimize this quadratic form subject to data constraints.
Thinking of kernel methods in this way gives us one framework for understanding the
error in kernel methods.

4. Kernels are also used to represent the covariance of random processes in general, and
Gaussian processes in particular. In this view of kernel-based regression, we start with a
prior distribution over functions, and then use Bayes rule to get a posterior distribution
based on measurements of the function.

In each case, using a kernel leads us in the end to a linear algebra problem: all the nonlinearity
in a kernel method is summarized in the kernel construction.

1

Bindel, Spring 2025 Numerics for Data Science

These notes are strongly influenced by the Acta Numerica article “Kernel techniques: From
machine learning to meshless methods” by Robert Schaback and Holger Wendland. This
survey article runs to 98 pages, but if you have the time and inclination to read more deeply,
I strongly recommend it s a starting point!

Some common examples

The choice of an appropriate kernel is the key to the success or failure of a kernel method. But
we often lack the insight to make an inspired choice of kernels, and so fall back on a handful
of standard families of kernels. Let us mention a few that are commonly used in function
approximation on ℝ𝑛.

Squared exponential

The squared exponential kernel has the general form

𝑘SE(𝑥, 𝑦) = 𝑠2 exp (−1
2(𝑥 − 𝑦)𝑇 𝑃 −1(𝑥 − 𝑦)) ,

for positive 𝑠 and positive definite 𝑃 . Most often we choose 𝑃 = ℓ2𝐼 , i.e.

𝑘SE(𝑥, 𝑦) = 𝑠2 exp (−1
2 (‖𝑥 − 𝑦‖

ℓ)
2
) .

The scale factor 𝑠 and the length scale ℓ are examples of kernel hyper-parameters. In the case
where we use a single length scale parameter (rather than a more general 𝑃), the squared
exponential kernel is an example of a radial basis function, i.e. a kernel that depends only on
the distance between the two arguments. In some corners of machine learning, this kernel is
referred to as “the” radial basis function, but we will avoid this usage in deference to the many
other useful radial basis functions in the world.

Exponential

The (absolute) exponential kernel has the form

𝑘exp(𝑥, 𝑦) = 𝑠2 exp (−‖𝑥 − 𝑦‖
ℓ)

where 𝑠 and ℓ are again the scale factor and length scale hyper-parameters. As with the
squared exponential kernel, there is a more general form in which ‖𝑥 − 𝑦‖/ℓ is replaced by
‖𝑥 − 𝑦‖𝑃 −1 for some positive definite 𝑃 matrix. Where the squared exponential function is
smooth, the exponential kernel is only continuous — it is not differentiable. This has important
implications in modeling, as the function approximations produced by kernel methods inherit
the smoothness of the kernel. Hence, a smooth kernel (like the squared exponential) is good
for fitting smooth functions, while a non-differentiable kernel (like the absolute exponential)
may be a better choice for fitting non-differentiable functions.

2

https://dx.doi.org/10.1017/S0962492906270016
https://dx.doi.org/10.1017/S0962492906270016

Bindel, Spring 2025 Numerics for Data Science

Cubic splines and thin plate splines

At the end of the last lecture, we saw that we can write cubic splines for 1D function approxi-
mation in terms of the kernel 𝑘(𝑥, 𝑦) = |𝑥 − 𝑦|3. For functions on ℝ2, the analogous choice is
the thin plate spline with kernel 𝑟 log 𝑟 for 𝑟 = ‖𝑥 − 𝑦‖. Unlike the squared exponential and ex-
ponential kernels, we express these kernels in terms of the distance 𝑟 and not a scaled distance
𝑟/ℓ, as approximation methods using cubic and thin plate splines are scale invariant: scaling
the coordinate system does not change the predictions. Also unlike the squared exponential
and exponential kernels, these kernels grow with increasing values of 𝑟, and so our intuition
that kernels measure “how similar things are” founders a bit on these examples. Other ways
of explaining kernels that are more appropriate to describing why these choices are useful.

Definitions and notation

A kernel on a set 𝒳 is a function 𝑘 ∶ 𝒳×𝒳 → ℝ. We will restrict our attention to symmetric ker-
nels, for which 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥). Some kernels depend on additional hyper-parameters, e.g. the
length scale and smoothness parameters described for squared exponential and Matérn kernels
in the previous section.

Often the set 𝒳 has special structure, and we want kernels to have invariants that are natural
to that structure. For 𝒳 = ℝ𝑑, we like to think about invariance under translation and
rotation. We say 𝑘 is stationary if it is invariant under translation, i.e. 𝑘(𝑥 + 𝑢, 𝑦 + 𝑢) for
any 𝑢. If 𝑘(𝑥, 𝑦) depends only on 𝑥 and the distance between 𝑥 and 𝑦, we say it is isotropic.
When 𝑘 is both stationary and isotropic, we often identify it with a radial basis function 𝜙, i.e.
𝑘(𝑥, 𝑦) = 𝜙(‖𝑥 − 𝑦‖).
For ordered 𝑋, 𝑌 ⊂ 𝒳, we write the matrix of pairwise evaluations as

(𝐾𝑋𝑌)𝑖𝑗 = 𝑘(𝑥𝑖, 𝑦𝑗).

We say 𝐾𝑋𝑋 is the kernel matrix for the set 𝑋 and kernel 𝑘. The kernel function 𝑘 is
positive definite if 𝐾𝑋𝑋 is positive definite whenever 𝑋 consists of distinct points. The squared
exponential and absolute exponential kernels are positive definite; the cubic spline and thin
plate spline kernels are not.

A kernel is conditionally positive definite relative to a space of functions 𝒰 from 𝒳 → ℛ if

𝑣𝑇 𝐾𝑋𝑋𝑣 ≥ 0 whenever 𝑣 ≠ 0 and ∀𝑢 ∈ 𝒰, 𝑢𝑇
𝑋𝑣 = 0.

A kernel on 𝒳 = ℝ𝑛 is conditionally positive definite of order 𝑑 if it is conditionally positive
definite relative to the space 𝒫𝑑−1 of polynomials of total degree at most 𝑑 − 1. The cubic
spline and thin plate spline kernels are both conditionally positive definite of order 2.

3

Bindel, Spring 2025 Numerics for Data Science

Feature maps

Suppose we want to approximate 𝑓 ∶ ℝ𝑛 → ℝ. A very simple scheme is to approximate 𝑓 by a
linear function,

𝑓(𝑥) ≈ ̂𝑓(𝑥) = 𝑐𝑇 𝑥
where the coefficients 𝑐 are determined from 𝑚 ≥ 𝑛 samples by a least squares fitting method.
That is, we solve

minimize ‖𝑋𝑇 𝑐 − 𝑓𝑋‖2

where 𝑋 is a matrix whose columns are data points 𝑥1, … , 𝑥𝑚 and 𝑓𝑋 is a vector of function
values 𝑓(𝑥1), … , 𝑓(𝑥𝑚).
Unfortunately, the space of linear functions is rather limited, so we may want a richer class of
models. The next step up in complexity would be to look at a vector space ℋ of functions
from ℝ𝑛 → ℝ, with basis functions 𝜓1, … , 𝜓𝑁 that we collect into a single vector-valued
function 𝜓. For example, for one-dimensional function approximation on [−1, 1], we might
choose a polynomial space of approximating functions ℋ = 𝒫𝑁−1 and use the Chebyshev
basis functions 𝑇0(𝑥), … , 𝑇𝑁−1(𝑥). I think of these as basis vectors for a space of candidate
approximating functions, but in the language of machine learning, we say that the functions
𝜓𝑖 are features and the vector-valued function 𝜓 is a feature map. We write our approximation
as

̂𝑓(𝑥) = 𝑐𝑇 𝜓(𝑥) =
𝑁

∑
𝑗=1

𝑐𝑗𝜓𝑗(𝑥),

and if we have function values at 𝑚 ≥ 𝑁 points, we can again fit the coefficients 𝑐 by the least
squares problem

minimize‖Ψ𝑇 𝑐 − 𝑓𝑋‖2

where [Ψ]𝑖𝑗 = 𝜓𝑖(𝑥𝑗). All nonlinearity in the scheme comes from the nonlinear functions in 𝜓;
afterward, we have a standard linear problem.

What if the dimension of our approximating space ℋ is much larger than the amount of
data we have — or even if it is infinite dimensional? Or, equivalently: what if we have more
features than training points? In this case, many different approximations in the space all fit
the data equally well, and we need a rule to choose from among them. From a linear numerical
algebra perspective, a natural choice is the minimal norm solution; that is, we approximate

̂𝑓(𝑥) = 𝑐𝑇 𝜓(𝑥) as before, but choose the coefficients to minimize ‖𝑐‖ subject to Ψ𝑇 𝑐 = 𝑓𝑋.
The solution to this linear system is

𝑐 = Ψ(Ψ𝑇 Ψ)−1𝑓𝑋

and therefore
̂𝑓(𝑥) = 𝜓(𝑥)𝑇 Ψ(Ψ𝑇 Ψ)−1𝑓𝑋.

4

Bindel, Spring 2025 Numerics for Data Science

We now observe that all the entries of the vector 𝜓(𝑥)𝑇 Ψ and the Gram matrix Ψ𝑇 Ψ can be
written in terms of inner products between feature vectors. Let 𝑘(𝑥, 𝑦) = 𝜓(𝑥)𝑇 𝜓(𝑦); then

̂𝑓(𝑥) = 𝑘𝑥𝑋𝐾−1
𝑋𝑋𝑓𝑋

where 𝑘𝑥𝑋 denotes the row vector with entries 𝑘(𝑥, 𝑥𝑖) and [𝐾𝑋𝑋]𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗). The function
𝑘(𝑥, 𝑦) = 𝜓(𝑥)𝑇 𝜓(𝑦) is the kernel function, and this way of writing the approximation only in
terms of these inner products, without writing down a feature map, is sometimes called the
“kernel trick.”

So far we have shown how to get from feature maps to kernels; what if we want to go in the
other direction? As it happens, if we are given a positive (semi)definite kernel function, we
can always construct a (possibly infinite) feature map associated with the kernel. To do this,
we define an integral operator on an appropriate space of distributions 𝑔

[𝒦𝑔](𝑥) = ∫ 𝑘(𝑥, 𝑦)𝑔(𝑦) 𝑑𝑦.

This encodes all the information about the kernel — formally, for example, if we let 𝑔 be a
Dirac delta at 𝑥𝑖, then [𝒦𝑔](𝑥) = 𝑘(𝑥, 𝑥𝑖). Mercer’s theorem tell us there is an eigenvalue
decomposition with eigenpairs (𝜆𝑗, 𝑣𝑗(𝑥)) so that

[𝒦𝑔](𝑥) =
∞

∑
𝑗=1

𝜆𝑗𝑣𝑗(𝑥) [∫ 𝑣𝑗(𝑦)𝑔(𝑦) 𝑑𝑦] ,

and the features 𝜓𝑗(𝑥) = √𝜆𝑗𝑣𝑗(𝑥) give us the kernel.

Kernels as basis functions

As we have seen in the previous section, a standard idea for function approximation is to choose
a function from some fixed approximation space ℋ. For example, if we define the function

𝜙(𝑟) = exp (−1
2 (𝑟

𝑙)
2
) ,

then a reasonable space for functions on [0, 1] might consist of approximants that are com-
binations of these radial basis function “bumps” centered at each of the nodes 𝑗/𝑁 for
𝑗 = 0, … , 𝑁 :

̂𝑓(𝑥) =
𝑁

∑
𝑗=0

𝑐𝑗𝜙(𝑥 − 𝑗/𝑁).

If we have data on a set of 𝑁 + 1 points 𝑋, and 𝑋′ denotes the points 0, 1/𝑁, … , 𝑁 , then the
interpolation equations ̂𝑓𝑋 = 𝑓𝑋 take the form

̂𝑓(𝑥𝑖) =
𝑛

∑
𝑗=0

𝜙(𝑥𝑖 − 𝑥′
𝑗)𝑐𝑗 = 𝑓(𝑥𝑖)

5

Bindel, Spring 2025 Numerics for Data Science

which we write in matrix form as
𝐾𝑋𝑋′𝑐 = 𝑓𝑋

where 𝑘(𝑥, 𝑦) = 𝜙(|𝑥 − 𝑦|). With more data points, we use least squares.

What if the data points are not uniformly distributed on [0, 1]? For example, what if we have
more data points close to 1 than we have close to 0? The choice of a fixed approximation
space limits us: we have no way of saying that with more data close to 1, we should allow the
approximation more wiggle room to fit the function there. We can do this by putting more
basis functions that are “centered” in the area where the data points are dense, e.g. by making
the data points and the centers coincide:

̂𝑓(𝑥) =
𝑁

∑
𝑗=1

𝑐𝑗𝜙(|𝑥 − 𝑥𝑗|).

Then the interpolation conditions are
𝑁

∑
𝑗=1

𝜙(|𝑥𝑖 − 𝑥𝑗|)𝑐𝑗 = 𝑓(𝑥𝑖).

or 𝐾𝑋𝑋𝑐 = 𝑓𝑋. By adapting the space to allow more flexibility close to where the data is,
we hope to get better approximations, but there is another advantage as well: if the kernel
is positive definite then the matrix 𝐾𝑋𝑋 is symmetric and positive definite, and we need not
worry about singularity of the linear system.

Of course, nothing says we are not allowed to use an approximation space that is adapted to
the sample points as well as a fixed approximation space. We saw this already in our discussion
of cubic splines, where we had a piece associated with the cubic radial basis function together
with a linear “tail”:

̂𝑓(𝑥) =
𝑚

∑
𝑗=1

𝑐𝑗|𝑥 − 𝑥𝑗|3 + 𝑑1 + 𝑑2𝑥.

In order to uniquely solve the linear system, we need some additional constraints; for cubic
splines, we use the discrete orthogonality condition

∑
𝑗

𝑐𝑗𝑝(𝑥𝑗) = 0, any linear 𝑝(𝑥).

More generally, if a kernel is conditionally positive definite relative to a space of functions 𝒰
spanned by the basis 𝑝1(𝑥), … , 𝑝𝑚′(𝑥), then the coefficients of the approximation

̂𝑓(𝑥) = ∑
𝑗

𝑐𝑗𝑘(𝑥, 𝑥𝑗) + ∑
𝑗

𝑑𝑗𝑝𝑗(𝑥)

are determined by the interpolation conditions and the discrete orthogonality condition

∑
𝑗

𝑐𝑗𝑢(𝑥𝑗) = 0, ∀𝑢 ∈ 𝒰.

6

Bindel, Spring 2025 Numerics for Data Science

We can write these conditions in matrix form as

[𝐾𝑋𝑋 𝑃
𝑃 𝑇 0] [𝑐

𝑑] = [𝑓𝑋
0]

where [𝑃]𝑖𝑗 = 𝑝𝑗(𝑥𝑖). So long as 𝑃 is full rank (we call this well-posedness of the points for
interpolation in 𝒰), this linear system is invertible. Most often, we include polynomial tails to
guarantee solvability of the interpolation problem with conditionally positive definite kernels,
but nothing prevents us from incorporating such terms in other approximations as well — and,
indeed, it may do our approximations a great deal of good.

Kernels and quadratic forms

From feature maps to RKHS

Let us return again to the feature map picture of kernels: we have an approximation space ℋ,
which we will assume for the moment is finite dimensional, with a basis 𝜓1(𝑥), 𝜓2(𝑥), … , 𝜓𝑁(𝑥).
From this space, we seek an approximation of the form

̂𝑓(𝑥) = ∑
𝑖

𝑐𝑖𝜓𝑖(𝑥)

so that ∑𝑖 𝑐2
𝑖 is minimal subject to the data constraints. Hidden in this construction is that

we have implicitly defined an inner product for the space of functions ℋ for which the {𝜓𝑖}𝑁
𝑖=1

basis is orthonormal; that is,
⟨𝜓𝑖, 𝜓𝑗⟩ℋ = 𝛿𝑖𝑗,

and we can rephrase the approximation problem without direct reference to the expansion
coefficients as

minimize ‖ ̂𝑓‖2
ℋ s.t. ̂𝑓𝑋 = 𝑓𝑋.

We can also express evaluation of ̂𝑓 at a point in terms of the inner product; if we define
𝑘𝑦 ∈ ℋ by

𝑘𝑦(𝑥) =
𝑁

∑
𝑖=1

𝜓𝑖(𝑦)𝜓𝑖(𝑥),

then

⟨ ̂𝑓, 𝑘𝑦⟩
ℋ

= ⟨
𝑁

∑
𝑖=1

𝑐𝑖𝜓𝑖,
𝑁

∑
𝑗=1

𝜓𝑗(𝑦)𝜓𝑗⟩
ℋ

= ∑
𝑖,𝑗

𝑐𝑖𝜓𝑗(𝑦) ⟨𝜓𝑖, 𝜓𝑗⟩ℋ =
𝑁

∑
𝑖=1

𝑐𝑖𝜓𝑖(𝑦) = ̂𝑓(𝑦).

7

Bindel, Spring 2025 Numerics for Data Science

This idea applies more generally: we can write point evaluation at 𝑦 for any function 𝑔 ∈ ℱ
as ⟨𝑔, 𝑘𝑦⟩ℋ, where the feature vector 𝜓(𝑦) gives the coefficients for the evaluation function 𝑘𝑦.
Note that 𝑘(𝑥, 𝑦) = ⟨𝑘𝑥, 𝑘𝑦⟩ℋ = 𝜓(𝑥)𝑇 𝜓(𝑦).
So far, we have only described what happens with finite-dimensional vector spaces of approx-
imating functions. But though there are some technicalities that we must deal with in the
infinite-dimensional case, the finite-dimensional picture sets the stage for the more general
definition. A space of functions ℋ is a reproducing kernel Hilbert space (RKHS) if function
evaluation can be written in terms of the inner product:

𝑔(𝑥) = ⟨𝑔, 𝑘𝑥⟩ℋ for any 𝑔 ∈ ℋ,

where 𝑘𝑥(𝑦) = 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥) = 𝑘𝑦(𝑥) is the associated (reproducing) kernel, so called
because it reproduces function evaluations. Given an orthonormal basis (a feature map) for
ℋ, we can write the inner product on ℋ and the inner product. Of course, we often would
prefer not to use feature maps for concrete computation; is there another way to get our hands
on the inner product? The answer, as it turns out, is yes.

From kernels to inner products

Every RKHS has an associated kernel function. We now sketch the path going in other
direction: given a positive definite kernel function, reconstruct the RKHS. The key observation
is that for any finite set of points 𝑋,

⟨∑
𝑖

𝑐𝑖𝑘𝑥𝑖
, ∑

𝑗
𝑑𝑗𝑘𝑥𝑗

⟩
ℋ

= ∑
𝑖,𝑗

𝑐𝑖𝑑𝑗𝑘(𝑥𝑖, 𝑥𝑗) = 𝑐𝑇 𝐾𝑋𝑋𝑑.

This allows us to write the inner products between any functions that can be expressed as a
linear combination of kernel shapes centered at any finite number of points. This is a rich
set of functions, almost rich enough to get a full RKHS. It is not quite enough: technically,
the set of functions that can be written in terms of a finite number of centers is a pre-Hilbert
space; to get the rest of the way to a RKHS, we need to “complete” the space by including
limits of Cauchy sequences. The RKHS constructed in this way is sometimes called the native
space for the associated kernel or radial basis function. Unfortunately, it is not always easy to
characterize the functions in the native space for a kernel! The native space for the squared
exponential kernel is small, consisting of only very smooth functions, while the native spaces
of some other kernels are larger.

Error analysis of kernel interpolation

Let us approximate 𝑓 ∈ ℋ by kernel interpolation at 𝑋 = (𝑥1, … , 𝑥𝑛), i.e.

minimize ‖ ̂𝑓‖2
ℋ s.t. ̂𝑓𝑋 = 𝑓𝑋.

8

Bindel, Spring 2025 Numerics for Data Science

What is the error |𝑓(𝑦) − ̂𝑓(𝑦)| at a new point 𝑦? Our approach looks like the approach to
error analysis for polynomial interpolation:

1. Define a function ̃𝑓 by interpolating at one more point.

2. Use regularity to control the difference between ̃𝑓 and ̂𝑓 .

Specifically, let ̃𝑓 interpolate at 𝑋′ = (𝑥1, … , 𝑥𝑛, 𝑦):

minimize ‖ ̃𝑓‖2
ℋ s.t. ̃𝑓𝑋 = 𝑓𝑋 and ̃𝑓(𝑦) = 𝑓(𝑦).

Because ̂𝑓 and ̃𝑓 involve the same optimization objective, but with more constraints for ̃𝑓 (and
𝑓 involves a limiting case of even more constraints), we have

‖ ̂𝑓‖2
ℋ ≤ ‖ ̃𝑓‖2

ℋ ≤ ‖𝑓‖2
ℋ.

The advantage of this is that we can write the norms in this inequality in a nice way. Observe
that 𝑒 = ̃𝑓 − ̂𝑓 is a kernel interpolant with centers at 𝑋′ and coefficients 𝑑 = 𝐾−1

𝑋′𝑋′𝑒𝑋′ ;

‖𝑒‖2
ℋ = 𝑑𝑇 𝐾𝑋′𝑋′𝑑 = 𝑒𝑇

𝑋′𝐾−1
𝑋′𝑋′𝑒𝑋′

Now we use the fact that 𝑒𝑋′ is zero except in the last component 𝑒(𝑦), and we know how to
write the last diagonal element of the inverse of a matrix:

‖𝑒‖2
ℋ = [𝐾−1

𝑋′𝑋′]𝑦𝑦𝑒(𝑦)2

Therefore, we have

|𝑒(𝑦)| = 𝑃𝑋(𝑦)‖𝑒‖ℋ, where 𝑃𝑋(𝑦)2 = 𝑘𝑦𝑦 − 𝑘𝑦𝑋𝐾−1
𝑋𝑋𝑘𝑋𝑦.

The function 𝑃 is known as the power function in some communities. Now, we observe that
⟨𝑒, ̂𝑓⟩ℋ = 0 by construction, so the Pythagorean theorem gives us

‖ ̂𝑓‖2
ℋ + ‖𝑒‖2

ℋ = ‖ ̃𝑓‖2
ℋ.

Combining with the bound ‖ ̃𝑓‖ℋ ≤ ‖𝑓‖ℋ, we have

‖𝑒‖2
ℋ ≤ ‖𝑓‖2

ℋ − ‖ ̂𝑓‖2
ℋ.

Putting all the pieces together, we have the error bound

|𝑓(𝑦) − ̂𝑓(𝑦)| = |𝑒(𝑦)| ≤ 𝑃𝑋(𝑦)√‖𝑓‖2
ℋ − ‖ ̂𝑓‖2

ℋ.

9

Bindel, Spring 2025 Numerics for Data Science

Beyond the positive definite

So far in this section, we have only considered positive definite kernels. What about condi-
tionally positive definite kernels, like the thin plate spline or cubic spline kernels? For a kernel
that is conditionally positive definite with respect to a space 𝒰, we define a pre-Hilbert space
of interpolants with a tail in 𝒰, i.e.

ℋ̌ =
⎧{
⎨{⎩

𝑔(𝑥) =
|𝑋|
∑
𝑗=1

𝑐𝑗𝑘(𝑥, 𝑥𝑗) + 𝑢(𝑥) ∶ 𝑐 ∈ ℝ|𝑋|, 𝑢 ∈ 𝒰, and ∀𝑣 ∈ 𝒰, 𝑐𝑇
𝑋𝑣𝑋 = 0

⎫}
⎬}⎭

.

We define the quadratic form as in the positive definite case (e.g. 𝑐𝑇 𝐾𝑋𝑋𝑐), but now the
quadratic form is only semi-definite, as it will be zero for functions that lie in 𝒰. We can
complete ℋ̌ under this semi-norm, and the remainder of the analysis goes forward as with the
positive definite case, except with some more technicalities.

There is a reason to think about the conditionally positive definite case, though: the cubic
spline is conditionally positive definite, and for the cubic spline we can give a mechanical
intuition behind the rather formal-looking error analysis in the previous subsection. A cubic
spline corresponds to the interpolant we would get if we bent a thin beam of wood to the
shape of our data. This shape minimizes the bending energy

ℰ[𝑢] = |𝑢|2ℋ = 1
2 ∫ |𝑢″(𝑥)|2 𝑑𝑥.

When we interpolate 𝑓 at points 𝑋, we use a certain amount of energy to bend the beam to
the right shape; this energy is less than the total bending energy of 𝑓 . If we want to push
the beam at 𝑦 from its minimal-energy position ̂𝑓(𝑦) to a new position ̂𝑓(𝑦) + 𝑒(𝑦), we use an
amount of energy associated with the stiffness times |𝑒(𝑦)|2. This additional energy or work
to bend ̂𝑓 to become ̃𝑓 can be no more than the difference in the bending energy of ̂𝑓 and the
bending energy of 𝑓 .

Gaussian processes

Our final story comes from Gaussian processes (GP). Informally, just as the ordinary Gaus-
sian distribution is over numbers and multivariate Gaussian distributions are over vectors, a
Gaussian process is a distribution over functions. More formally, a Gaussian process on a
set 𝒳 with mean field 𝜇 and covariance kernel 𝑘 is a collection of Gaussian random variables
indexed by 𝒳, any finite subset of which obeys a multi-variate Gaussian distribution; that is,
if 𝑓 is a draw from a Gaussian process, then for any 𝑋 ⊂ 𝒳,

𝑓𝑋 ∼ 𝑁(𝜇𝑋, 𝐾𝑋𝑋).

In Bayesian inference using GPs, we start with a prior GP from which we assume 𝑓 is drawn,
then compute a posterior GP conditioned on data.

10

Bindel, Spring 2025 Numerics for Data Science

Because GPs are defined in terms of the behavior at finite subsets of points, we can really
focus on the multivariate normal case. Suppose a multivariate Gaussian random variable 𝑌 is
partitioned into 𝑌1 and 𝑌2. For simplicity, we assume 𝑌 has mean zero. Then the distribution
is

𝑌 ∼ 𝑁(0, 𝐾),
i.e. we have the probability density

𝑝(𝑦) = 1
det(2𝜋𝐾) exp (−1

2𝑦𝑇 𝐾−1𝑦) .

Now, we rewrite the quadratic form 𝑦𝑇 Ω𝑦 (where Ω = 𝐾−1 is the precision matrix) in terms
of the components 𝑦1 and 𝑦2:

𝑦𝑇 𝐾−1𝑦 = 𝑦𝑇 Ω𝑦 = (𝑦2 − 𝑧)Ω22(𝑦2 − 𝑧), where 𝑧 = −Ω−1
22 Ω21𝑦2

Now we rewrite the (2, 1) block of the equation Ω𝐾 = 𝐼 as Ω21𝐾11 + Ω22𝐾21 = 0, then
rearrange to −Ω−1

22 Ω21 = 𝐾21𝐾−1
11 , to get the more convenient formula

𝑧 = 𝐾21𝐾−1
11 𝑦1.

The same approach gives us the Schur complement relation Ω−1
22 = 𝐾22 − 𝐾21𝐾−1

11 𝐾12 = 𝑆.
Plugging this formulation of the quadratic into the joint density and dividing out by the
marginal for 𝑦1 gives the conditional density

𝑝(𝑦2|𝑦1) = 𝑝(𝑦1, 𝑦2)
∫ 𝑝(𝑦1, 𝑤) 𝑑𝑤 = 1

√det(2𝜋𝑆)
exp (−1

2(𝑦2 − 𝑧)𝑇 𝑆−1(𝑦2 − 𝑧)) .

Thus, the conditional distribution for 𝑌2 given 𝑌1 = 𝑦1 is again Gaussian:

𝑌2|𝑌1 = 𝑦1 ∼ 𝑁(𝑧, 𝑆).

Applying the same logic to Gaussian processes, we find that if 𝑓 is drawn from a GP with
mean field 0 and covariance kernel 𝑘, then conditioning on observations at points 𝑋 gives a
new GP with mean and covariance kernel

̂𝜇(𝑥) = 𝑘𝑥𝑋𝐾−1
𝑋𝑋𝑓𝑋 and 𝑘̂(𝑥, 𝑥′) = 𝑘(𝑥, 𝑥′) − 𝑘𝑥𝑋𝐾−1

𝑋𝑋𝑘𝑋𝑥′ .

The conditional mean field ̂𝜇(𝑥) is exactly the same as the kernel prediction that we have seen
derived in other ways, and we might recognize the preditive variance at 𝑥 conditioned on data
at 𝑋 as

𝑘̂(𝑥, 𝑥) = 𝑘(𝑥, 𝑥) − 𝑘𝑥𝑋𝐾−1
𝑋𝑋𝑘𝑋𝑥 = 𝑃𝑋(𝑥)2,

where 𝑃𝑋(𝑥) is the power function for 𝑥 that we saw in the last section.

11

Bindel, Spring 2025 Numerics for Data Science

Deterministic or stochastic?

In the previous two sections, we have developed two ways to think about the error analysis of
kernel methods to interpolate 𝑓 :

1. Optimal approximation: suppose ‖𝑓‖ℋ ≤ 𝐶 and let

ℱ = {𝑔 ∈ ℋ ∶ ‖𝑔‖ℋ ≤ 𝐶 and 𝑔𝑋 = 𝑓𝑋}
= { ̂𝑓 + 𝑢 ∈ ℋ ∶ ⟨ ̂𝑓, 𝑢⟩ℋ = 0 and ‖𝑢‖2

ℋ ≤ 𝐶2 − ‖ ̂𝑓‖2
ℋ} .

That is, ̂𝑓 is the center point of a region that is both consistent with the data constraints
and the norm constraints. Because it is at the center of this set, ̂𝑓 minimizes the worst
possible error (in the native space norm) over all possible 𝑓 that are consistent with what
we know. To get pointwise error estimates, we look at bounds on |𝑢(𝑥)|2 for all possible
𝑢 that satisfy 𝑢𝑋 = 0 and ‖𝑢‖2

ℋ ≤ 𝐶2 − ‖ ̂𝑓‖2
ℋ.

2. Bayesian inference: suppose 𝑓 is drawn from a Gaussian process with some known
covariance kernel. Conditioned on the data 𝑓𝑋, we have a new Gaussian process with
mean field ̂𝑓 and a conditional kernel. To get pointwise error estimates, we look at the
predictive distribution at a new test point 𝑥 (itself a Gaussian distribution), including
the predictive variance.

The deterministic approach gives us the best worst-case error given what we know about the
function; the Bayesian approach gives us an expected value. Both give the same predictions, and
both use the same quantities in computing an error result, though with different interpretations.
Both approaches also use information that might not be easy to access (a bound on a native
space norm of 𝑓 , or an appropriate prior distribution).

Why should we not just pick one approach or the other? Apart from the question of modeling
assumption, the two approaches yield different predictions if the measurements of 𝑓 are more
complex, e.g. if we have information such as an inequality bound or a nonlinear relationship
between point values of 𝑓 . However, this is beyond the scope of the current discussion.

12

	Kernels
	Some common examples
	Definitions and notation

	Feature maps
	Kernels as basis functions
	Kernels and quadratic forms
	From feature maps to RKHS
	From kernels to inner products
	Error analysis of kernel interpolation
	Beyond the positive definite

	Gaussian processes
	Deterministic or stochastic?

