
CS 6241: Numerics for Data Science
Non-Negative Matrix Factorization

David Bindel

2025-02-20

Non-negative Matrix Factorization (NMF)

In the last lecture, we considered low rank approximations to data matrices. We started
with the “optimal” rank 𝑘 approximation to 𝐴 ∈ ℝ𝑚×𝑛 via the SVD, then moved on to
approximations that represent 𝐴 in terms of the rows and columns of 𝐴 rather than in terms
of the left and right singular vectors. We argued that while these latter factorizations may not
minimize the Frobenius norm of the error for a given rank, they are easier to interpret because
they are expressed in terms of the factors in the original data set. We continue with our theme
of finding interpretable factorizations today by looking at non-negative matrix factorizations
(NMF).

Let ℝ+ denote the non-negative real numbers; for a non-negative data matrix 𝐴 ∈ ℝ𝑚×𝑛
+ , we

seek
𝐴 ≈ 𝑊𝐻, where 𝑊 ∈ ℝ𝑚×𝑘

+ , 𝐻 ∈ ℝ𝑘×𝑛
+ .

Non-negative matrix factorizations are convenient because they express the columns of 𝐴 (the
data) in terms of positively weighted sums of the columns of 𝑊 , which we interpret as “parts.”
This type of decomposition into parts makes sense in many different domains; for example:

Meaning of columns of 𝐴 Meaning of columns of 𝑊
Word distributions for documents Word distributions for topics
Pictures of faces Pictures of facial features
Connections to friends Communities
Spectra of chemical mixtures Spectra of component molecules

Unfortunately, non-negative matrix factorizations are generally much more difficult to com-
pute than the factorizations we considered in the last lecture. There are three fundamental
difficulties:

1

Bindel, Spring 2025 Numerics for Data Science

• We do not know how big 𝑘 must be to get a “good” representation. Compare this to
ordinary factorization, where we can hope for error bounds in terms of 𝜎𝑘+1, … , 𝜎min(𝑚,𝑛).

• The optimization problem is non-convex, and there may generally be many local minima.
Again, compare this with the optimal approximation problem solved by singular value
decomposition, which has saddle points, but has no local minimizers that are not also
global minimizers.

• NMF is not incremental: the best rank 𝑘 approximation may have little to do with the
best rank 𝑘 + 1 approximation. Again, we can compare with the unconstrained problem,
for which the best rank 𝑘 + 1 approximation is a rank-one update to the best rank 𝑘
approximation.

Faced with this hard optimization problem, we consider two tactics. First, we might seek
efficient optimization methods that at least converge to a local minimizer1; we will spend the
first part of the lecture discussing this approach. Second, we might seek common special cases
where we can prove something about the approximation. In particular, the NMF problem is
much more tractable when we make a separability assumption which is appropriate in some
applications.

Going with gradients

Projected gradient descent

We begin with the projected gradient descent algorithm for minimizing a function 𝜙 subject to
simple constraints. Let 𝒫(𝑥) be a projection function that maps 𝑥 to the nearest feasible point;
in the case of a simple non-negativity constraint, 𝒫(𝑥) = [𝑥]+ is the elementwise maximum of
𝑥 and zero. The projected gradient descent iteration is then

𝑥𝑘+1 = 𝒫 (𝑥𝑘+1 − 𝛼𝑘∇𝜙(𝑥𝑘)) .

The convergence properties of projected gradient descent are similar to those of the unpro-
jected version: we can show reliable convergence for convex (or locally convex) functions and
sufficiently short step sizes, though ill-conditioning may make the convergence slow.

In order to write the gradient for the NMF objective without descending into a morass of
indices, it is helpful to introduce the Frobenius inner product: for matrices 𝑋, 𝑌 ∈ ℝ𝑚×𝑛,

⟨𝑋, 𝑌 ⟩𝐹 = ∑
𝑖,𝑗

𝑦𝑖𝑗𝑥𝑖𝑗 = tr(𝑌 𝑇 𝑋).

1In most cases, we can only show convergence to a stationary point, but we are likely to converge to a minimizer
for almost all initial guesses.

2

Bindel, Spring 2025 Numerics for Data Science

The Frobenius inner product is the inner product associated with the Frobenius norm: ‖𝑋‖2
𝐹 =

⟨𝑋, 𝑋⟩𝐹 , and we can apply the usual product rule for differentiation to compute directional
derivatives of 𝜙(𝑊, 𝐻) = ‖𝐴 − 𝑊𝐻‖2

𝐹 /2 with respect to 𝑊 and 𝐻:

𝛿𝜙 = 𝛿 [1
2⟨𝐴 − 𝑊𝐻, 𝐴 − 𝑊𝐻⟩𝐹]

= ⟨𝛿(𝐴 − 𝑊𝐻), 𝐴 − 𝑊𝐻⟩𝐹
= −⟨(𝛿𝑊)𝐻, 𝐴 − 𝑊𝐻⟩𝐹 − ⟨𝑊(𝛿𝐻), 𝐴 − 𝑊𝐻⟩𝐹 .

We let 𝑅 = 𝐴 − 𝑊𝐻, and use the fact that the trace of a product of matrices is invariant
under cyclic permutations of the matrices:

⟨(𝛿𝑊)𝐻, 𝑅⟩𝐹 = tr(𝐻𝑇 (𝛿𝑊)𝑇 𝑅) = tr((𝛿𝑊)𝑇 𝑅𝐻𝑇) = ⟨𝛿𝑊, 𝑅𝐻𝑇 ⟩𝐹
⟨𝑊(𝛿𝐻), 𝑅⟩𝐹 = tr((𝛿𝐻)𝑇 𝑊 𝑇 𝑅) = ⟨𝛿𝐻, 𝑊 𝑇 𝑅⟩𝐹 .

Therefore, the projected gradient descent iteration for this problem is

𝑊 new = [𝑊 + 𝛼𝑅𝐻𝑇]+
𝐻new = [𝐻 + 𝛼𝑊 𝑇 𝑅]+ ,

where in the interest of legibility we have suppressed the iteration index on the right hand
side.

Multiplicative updates

One of the earliest and most popular NMF solvers is the multiplicative update scheme of Lee
and Seung. This has the form of a scaled gradient descent iteration where we replace the
uniform step size 𝛼𝑘 with a different (non-negative) step size for each entry of 𝑊 and 𝐻:

𝑊 new = [𝑊 + 𝑆 ⊙ (𝐴𝐻𝑇 − 𝑊𝐻𝐻𝑇)]+
𝐻new = [𝐻 + 𝑆′ ⊙ (𝑊 𝑇 𝐴 − 𝑊 𝑇 𝑊𝐻)]+ ,

where ⊙ denotes elementwise multiplication. We similarly let ⊘ to denote elementwise division
to define the nonnegative scaling matrices

𝑆 = 𝑊 ⊘ (𝑊𝐻𝐻𝑇), 𝑆′ = 𝐻 ⊘ (𝑊 𝑇 𝑊𝐻).
With these choices, two of the terms in the summation cancel, so that

𝑊 new = 𝑆 ⊙ (𝐴𝐻𝑇) = 𝑊 ⊘ (𝑊𝐻𝐻𝑇) ⊙ (𝐴𝐻𝑇)
𝐻new = 𝑆′ ⊙ (𝑊 𝑇 𝐴) = 𝐻 ⊘ (𝑊 𝑇 𝑊𝐻) ⊙ (𝑊 𝑇 𝐴).

At each step of the Lee and Seung scheme, we scale the (non-negative) elements of 𝑊 and 𝐻
by non-negative factors, yielding a non-negative result. There is no need for a non-negative
projection because the step sizes are chosen increasingly conservatively as elements of 𝑊 and
𝐻 approach zero. But because the steps are very conservative, the Lee and Seung algorithm
may require a large number of steps to converge.

3

Bindel, Spring 2025 Numerics for Data Science

Coordinate descent

The (block) coordinate descent method (also known as block relaxation or nonlinear Gauss-
Seidel) for solving

minimize 𝜙(𝑥1, 𝑥2, … , 𝑥𝑝) for 𝑥𝑖 ∈ Ω𝑖

involves repeatedly optimizing with respect to one coordinate at a time. In the basic method,
we iterate through each 𝑖 and compute

𝑥𝑘+1
𝑖 = argmin𝜉 𝜙(𝑥𝑘+1

1 , … , 𝑥𝑘+1
𝑖−1 , 𝜉, 𝑥𝑘

𝑖+1, … , 𝑥𝑘
𝑝).

The individual subproblems are often simpler than the full problem. If each subproblem has
a unique solution (e.g. if each subproblem is strongly convex), the iteration converges to a
stationary point2; this is the situation for all the iterations we will discuss.

Simple coordinate descent

Perhaps the simplest coordinate descent algorithm for NMF sweeps through all entries of 𝑊
and 𝐻. Let 𝑅 = 𝐴 − 𝑊𝐻; then for the (𝑖, 𝑗) coordinate of 𝑊 , we compute the update
𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝑠 where 𝑠 minimizes the quadratic

1
2‖𝐴 − (𝑊 + 𝑠𝑒𝑖𝑒𝑇

𝑗)𝐻‖𝑠
𝐹 = 1

2‖𝑅‖2
𝐹 − 𝑠⟨(𝑒𝑖𝑒𝑇

𝑗), 𝑅𝐻𝑇 ⟩𝐹 + 1
2𝑠2‖𝑒𝑖𝑒𝑇

𝑗 𝐻‖2
𝐹 ,

subject to the constraint that 𝑠 ≥ −𝑤𝑖𝑗. The solution to this optimization is

𝑠 = max (−𝑤𝑖𝑗,
(𝑅𝐻𝑇)𝑖𝑗
(𝐻𝐻𝑇)𝑗𝑗

) .

Therefore, the update for 𝑤𝑖𝑗 is

𝑠 = max (−𝑤𝑖𝑗,
(𝑅𝐻𝑇)𝑖𝑗
(𝐻𝐻𝑇)𝑗𝑗

) , 𝑤𝑖𝑗 ∶= 𝑤𝑖𝑗 + 𝑠, 𝑅𝑖,∶ ∶= 𝑅𝑖,∶ − 𝑠𝐻𝑗,∶

A similar computation for the elements of 𝐻 gives us the update formulas

𝑠 = max (−ℎ𝑖𝑗,
(𝑊 𝑇 𝑅)𝑖𝑗
(𝑊 𝑇 𝑊)𝑖𝑖

) , ℎ𝑖𝑗 ∶= ℎ𝑖𝑗 + 𝑠, 𝑅∶,𝑗 ∶= 𝑅∶,𝑗 − 𝑠𝑊∶,𝑖.

Superficially, this looks much like projected gradient descent with scaled step lengths. However,
where in gradient descent (or the multiplicative updates of Lee and Seung) the updates for
all entries of 𝑊 and 𝐻 are independent, in this coordinate descent algorithm we only have
independence of updates for a single column of 𝑊 or a single row of 𝐻. This is a disadvantage
for efficient implementation.

2For non-convex problems, we may converge to a saddle; as an example, consider simple coordinate descent
for 𝜙(𝑥1, 𝑥2) = 𝑥2

1 + 4𝑥1𝑥2 + 𝑥2
2.

4

Bindel, Spring 2025 Numerics for Data Science

HALS/RRI

The simple algorithm in the previous algorithm relaxed on each element of 𝑊 and 𝐻 indepen-
dently. In the hierarchical alternating least squares or rank-one residual iteration, we treat
the problem as consisting of 2𝑘 vector blocks, one for each column of 𝑊 and row of 𝐻. To
update a column 𝑊∶,𝑗 ∶= 𝑊∶,𝑗 + 𝑢, we must solve the least squares problem

minimize ‖𝑅 − 𝑢𝐻𝑗,∶‖2
𝐹 s.t. 𝑢 ≥ −𝑊∶,𝑗,

which is equivalent to solving the independent single variable least squares problems

minimize ‖𝑅𝑖,∶ − 𝑢𝑖𝐻𝑗,∶‖2
2 s.t. 𝑢𝑖 ≥ −𝑤𝑖𝑗.

The 𝑢𝑖 must satisfy the normal equations unless it hits the bound constraint; thus,

𝑢𝑖 = max (−𝑤𝑖𝑗,
𝑅𝑖,∶𝐻𝑇

𝑗,∶
𝐻𝑗,∶𝐻𝑇

𝑗,∶
) = max (−𝑤𝑖𝑗,

(𝑅𝐻𝑇)𝑖𝑗
(𝐻𝐻𝑇)𝑗𝑗

) .

Thus, updating a column of 𝑊 at a time is equivalent to updating each of the elements in the
column in sequence in scalar coordinate descent. The same is true when we update row of
𝐻.

ANLS

The alternating non-negative least squares (ANLS) iteration updates all of 𝑊 together, then
all of 𝐻:

𝑊 ∶= argmin𝑊≥0 ‖𝐴 − 𝑊𝐻‖2
𝐹

𝐻 ∶= argmin𝐻≥0 ‖𝐴 − 𝑊𝐻‖2
𝐹

We can solve for each row of 𝑊 (or column of 𝐻) independently by solving a non-negative least
squares problem. Unfortunately, these non-negative least squares problems cannot be solved
in a simple closed form!

The non-negative least squares problem has the general form

minimize ‖𝐴𝑥 − 𝑏‖2 such that 𝑥 ≥ 0;
it is a convex optimization problem that can be solved using any constrained optimization
solver. An old class of solvers for this problem is the active set methods. To derive these
methods, we partition the variables into a free set ℐ and a constrained set 𝒥, and rewrite the
KKT equations in the form

𝑥ℐ = 𝐴†
ℐ𝑏 𝑥ℐ ≥ 0

𝐴𝑇
𝒥(𝐴𝑥 − 𝑏) ≥ 0 𝑥𝒥 = 0.

If the partitioning into ℐ and 𝒥 is known, we can compute 𝑥 via an ordinary least squares
solve. The difficult part is to figure out which variables are free! The simplest approach is
to guess ℐ and 𝒥 and then iteratively improve the guess by moving one variable at a time
between the two sets as follows. Starting from an initial non-negative guess 𝑥, ℐ, 𝒥, we

5

Bindel, Spring 2025 Numerics for Data Science

• Compute 𝑝 = 𝐴†
ℐ𝑏 − 𝑥.

• Compute a new point 𝑥 ∶= 𝑥+𝛼𝑝 where 𝛼 ≤ 1 is chosen to be as large as possible subject
to non-negativity of the new point.

• If 𝛼 < 1, we move the index for whatever component became zero from the ℐ set to the
𝒥 set and compute another step.

• If 𝛼 = 1 and 𝑔𝒥 = 𝐴𝑇
𝒥(𝐴𝑥 − 𝑏) has any negative elements, we move the index associated

with the most negative element of 𝑟𝒥 from the 𝒥 set to the ℐ set and compute another
step.

• Otherwise, we have 𝛼 = 1 and 𝑔𝒥 ≥ 0. In this case, the KKT conditions are satisfied,
and we may terminate.

The problem with this approach is that we only change our guess at the free variables by
adding or removing one variable per iteration. If our initial guess is not very good, it may
take many iterations to converge. Alternate methods are more aggressive about changing the
free variable set (or, equivalently, the active constraint set).

Separable NMF

In the general case, non-negative matrix factorization is a hard problem. However, there are
special cases where it becomes easier, and these are worth exploring. In a separable problem,
we can compute

Π𝑇 𝐴 = [𝐼
𝑊2

] 𝐻;

that is, every row of 𝐴 can be expressed as a positively-weighted combination of 𝑘 columns of
𝐴. Examples where we might see this include:

• In topic modeling, we might have “anchor words” that are primarily associated with just
one topic.

• In image decomposition, we might have “pure pixels” that are active for just one part of
an image.

• In chemometrics, we might see that a component molecule produces a spike at a unique
frequency that is not present for other components.

Assuming that this separability condition occurs, how are we to find the 𝑘 rows of 𝐴 that go
into 𝐻? What we will do is to compute the normalized matrix ̄𝐴 by scaling each row of 𝐴 so
that it sums to 1. With this normalization, all rows of ̄𝐴 are positively weighted combinations
of the anchor rows where the weights sum to 1; that is, if we view each row as a point in

6

Bindel, Spring 2025 Numerics for Data Science

𝑚-dimensional space, then the anchor rows are points on the convex hull. As discussed in the
last lecture, we can find the convex hull with the pivoted QR algorithm.

̄𝐴𝑇 Π = 𝑄𝑅.

Variants of this approach also work for nearly separable problems.

7

	Non-negative Matrix Factorization (NMF)
	Going with gradients
	Projected gradient descent
	Multiplicative updates

	Coordinate descent
	Simple coordinate descent
	HALS/RRI
	ANLS

	Separable NMF

