
CS 6241: Numerics for Data Science
Latent factor models

David Bindel

2025-02-11

Introduction

Last week, we considered least squares and related regression models. In these models, we
want to predict some dependent variable 𝑌 (also called an outcome variable) as a function of
some independent variables 𝑋 (also called features, regressors, or explanatory variables). In
the simplest case, we look for a linear prediction:

𝑌 ≈ 𝑋𝑤

where 𝑋 is a row vector of features and 𝑤 is a column vector of weights. We can make the
model a little more expressive with a linear prediction in a higher-dimensional space:

𝑌 ≈ 𝜓(𝑋)𝑤

where 𝜓 is a (nonlinear) feature map from the original vector of dependent variables to a
new, expanded set of variables1. In either case, we choose 𝑤 by minimizing a sum of loss
functions over examples drawn from a population, maybe together with a regularization term.
For the least squares loss function and some standard regularizers, we can solve the resulting
optimization problem using factorization methods from numerical linear algebra.

In some cases, though, the distinction between explanatory and output variables is not clear.
Sometimes we may know different subsets of the variables for each experiment, and we want
to fill in the rest. Or we may know all the variables in our experiment, and want to look for
relationships between them rather than trying to make predictions. Or we might want to use
the attributes associated with different objects not for prediction, but to cluster the objects,
or to find outliers. Remarkably, we can view these tasks as well through the lens of matrix
factorization.

1We did not talk about feature maps yet in this class. But many of you will have seen feature maps and “the
kernel trick” in a machine learning class, and you are implicitly using feature maps in the polynomial fitting
homework problem from last week. We will discuss these ideas in more detail next week when we discuss
function approximation.

1

Bindel, Spring 2025 Numerics for Data Science

Matrix factorizations and latent variables

We can use matrices to encode many types of data: images, graphs, user preferences, and
distributions of jointly distributed random variables are but a few. Often, as in our linear
regression examples, the rows of the matrix represent objects or experiments and the columns
represent associated attributes. In other cases, as when encoding a graph, both rows and
columns represent objects, and the entries of the matrix represent pairwise interactions. Fac-
toring these data matrices can help us compress and denoise data, separate effects of different
factors, find similarities between objects, or fill in missing data.

We generally seek to approximately factor a data matrix 𝐴 ∈ ℝ𝑚×𝑛 as

𝐴 ≈ 𝐿𝑀𝑅, 𝐿 ∈ ℝ𝑚×𝑟, 𝑀 ∈ ℝ𝑟×𝑟, 𝑅 ∈ ℝ𝑟×𝑛.

In this view, we can think of 𝑅 (or 𝑀𝑅) as a map from the original attributes to a smaller
set of latent factors. Different factorization methods differ both in the structural constraints
on 𝐿, 𝑀 , and 𝑅 and on how the approximation is chosen.

It is worth being a little careful in how we think of these factorizations! In most of linear
algebra, we are interested in a matrix as a representation of a linear map or a quadratic form
with respect to some particular basis — but we have a rich set of bases we can choose. For data
analysis, though, we may want to restrict the bases we consider for the sake of interpretability.
For example, if we want to choose as our latent factors a subset of the original factors, or if we
want to enforce non-negativity in the factors, we cannot consider arbitrary changes of basis.
Because of this, some of the methods that we like best for interpretability are also the most
difficult to compute, as they involve an optimization problem that is combinatorial rather than
continuous in nature. We will see this issue repeatedly this week.

A gallery of examples

Before we turn to our first batch of factorization tools, let us first set the stage with some
concrete example applications.

Document search and latent semantic analysis

The vector space model was one of the early triumphs in the field of information retrieval. In
this model, documents are treated as “bags of words,” and each document is represented as a
vector of term frequencies, one for each word in the vocabulary2. There are several different
ways that the term frequencies can be computed. We might use a binary indicator that says

2Very common words (stop words) and very rare words may be removed from the vocabulary before taking
counts.

2

Bindel, Spring 2025 Numerics for Data Science

whether a term is present or absent; raw count information or relative frequency; or something
affine or nonlinear (usually logarithmic) function of the frequency. We also usually scale by the
inverse document frequency, which measures how common the term is across all documents.
For example, a common choice is

idf(𝑡, 𝐷) = log 𝑁
|documents in 𝐷 containing 𝑡| .

The tf-idf matrix for term 𝑡 and document 𝑑 in corpus 𝐷 is then

tfidf(𝑡, 𝑑, 𝐷) = tf(𝑡, 𝑑) ⋅ idf(𝑡, 𝐷).

In latent semantic indexing, we approximate the tf-idf matrix by the truncated singular value
decomposition, and use the result to compute a measure of query relevance. For example,
suppose the tf-idf matrix was arranged so that each row represents a term, and each column
represents a document. Let 𝑞 be the tf-idf vector for the words in a query; for example, it
might be a vector of all zeros except for a one in the row indicating the word “vehicle.” To
find documents relative to the query, we would compute the row vector

𝑟 = 𝑞𝑇 𝑈𝑘Σ𝑘𝑉 𝑇
𝑘

and use 𝑟𝑖 as the relevance score. If we used the full SVD, the relevance score would be
exactly the row of the original tf-idf matrix associated with the term “vehicle,” which might
not include highly relevant documents in which the word “vehicle” never appears but words
like “boat” or “truck” or “car” do appear. By using the SVD, we “blur out” the specific words
and get more semantically meaningful results.

The same idea of latent semantic indexing (LSI) or latent semantic analyis (LSA) can apply
in other settings as well. For example, similar ideas appear in bibliometrics, where one wants
to find highly relevant papers. But there are also some real difficulties with LSI. One problem
is that the nonlinear mapping from term counts to matrix entries is not always easy to justify,
and an appropriate choice may require some experimentation. Another problem with LSI is
that it is generally impossible to assign any real meaning to the factors.

𝑘-means clustering as a matrix factorization

The 𝑘-means algorithm is a standard clustering method. Given 𝑚 points in 𝑛-dimensional
space (which we think of as the rows in an 𝑚×𝑛 matrix 𝐴), the 𝑘-means algorithm repeatedly
updates a set of 𝑘 representative vectors 𝑟1, … , 𝑟𝑘 as follows:

• Assign each point in the data set to a cluster based on the nearest representative vector
(e.g. in Euclidean distance, though we could also look at angles).

• Recompute each representative vector as the mean of all the points in the cluster.

3

Bindel, Spring 2025 Numerics for Data Science

In matrix terms, the 𝑘-means algorithm computes the factorization

𝐴 ≈ 𝐿𝑅

where the rows of 𝑅 are the representative vectors 𝑟𝑗 and the rows of 𝐿 indicate cluster
membership; that is, 𝐿𝑖𝑗 is 1 if point 𝑖 is in cluster 𝑗, and zero otherwise. More particularly,
the 𝑘-means method is an example of an alternating iteration: first we optimize 𝐿 while
holding 𝑅 fixed, then we optimize 𝑅 while holding 𝐿 fixed. The optimization minimizes the
least squares error, and it generally converges to a local minimum in practice.

Eigenfaces, fisherfaces, and image analysis

The method of eigenfaces (or more generally eigenimages) has been used for image recogni-
tion and classification since it was developed by Sirovich and Kirby in 1980. The method
essentially extracts a low-dimensional feature representation of images of (gray scale) faces.
The “eigenfaces” are computed by principal component analysis on a collection of (gray scale,
possibly low resolution) face images, which are each laid out in the columns of a large matrix.
Classification is done by mapping a new face into a low-dimensional space of eigenface features,
then looking for the nearest neighbor in that space. As with latent semantic indexing, the
method works in part because it captures identifying features while “blurring out” irrelevant
fine details.

An alternative to eigenfaces is fisherfaces. Where eigenfaces are may be written in terms
of the eigenvalue decomposition of a covariance matrix, fisherfaces come from Fisher’s linear
discriminant analysis (LDA) approach. Here we are interested in the largest eigenvales and
vectors for the generalized problem

Σ𝑏𝑤 = 𝜆Σ𝑤
where Σ is the common covariance for each class of (faces) examples in the data set, and

Σ𝑏 = 1
𝐶

𝐶
∑
𝑗=1

(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)

is the between-class variability matrix. Here the 𝜇𝑖 are the class means and 𝜇 is the mean
of the class means. Unlike the eigenfaces technique, which is agnostic to class labels on the
images, the fisherfaces approach tailors the choice of features to the classification problem at
hand.

Collaborative filtering and the Netflix challenge

In 2009, Netflix awarded a $1M prize in a competition to beat the accuracy of their in-house
collaborative filtering algorithm to predict how users would rate films. One of the key ideas in
collaborative filtering is matrix completion. The ratings are given in a giant matrix in which

4

Bindel, Spring 2025 Numerics for Data Science

rows correspond to users and columns correspond to movies. But as most users have not
watched most movies, only a relatively small number of the matrix entries are known. The
idea of matrix completion is to use those few entries to learn a low rank factorization that
matches the data and can be used to predict the remaining entries. The intuition is that
the low rank factorization represents a mapping of users and movies into a low-dimensional
space that captures certain common attributes (e.g. how much action there is in the movie, or
whether the tone is light or serious).

Somewhat remarkably, one can prove that this type of reconstruction is possible (and even
reasonably straightforward to compute) under incoherence assumptions that we will discuss
on Friday.

Anchor words and interpretable topic models

In latent semantic indexing, we used the SVD to compute a low-dimensional feature space to
describe documents. However, that space is very difficult to interpret. We would ideally like
to summarize documents in terms of their relation to meaningful topics; the same idea also
applies to other collections, such as lists of movies or songs that we might want to characterize
by genre. In topic modeling, we explain each document in terms of a distribution over of a
few stopic, where each topic is in turn a (sparse) distribution over words. We generally insist
that all these distribution vectors are properly stochastic: that is, the entries should be non-
negative, and they should sum to one. Hence, topic modeling boils down to a probabilistic
matrix factorization problem, a particular type of non-negative matrix factorization (NMF).

As we will see later in the week, non-negative matrix factorizations are generally hard to
compute. However, the problem becomes much easier if we assume that for each topic there
is at least one word that is mostly associated with that topic (and not with others). This
word is called an anchor word for the topic. We can find anchor words by applying the
pivoted QR algorithm, which we will turn to shortly, to a matrix of word-word co-occurrence
statistics. Once we have the anchor words, we can compute word-topic distributions by solving
non-negative least squares problems.

Some basic factorization tools

Next time, we will start our discussion of factorizations used in data analysis with the sym-
metric eigenvalue problem. This is a useful building block on its own, particularly for low rank
approximation of symmetric matrices. It is also useful as a prelude to another discussion of
the singular value decomposition (SVD), that Swiss Army knife of matrix factorizations. But
both the symmetric eigenvalue decomposition and the singular value decomposition involve
a very flexible choice of bases; as we have mentioned, this is not always ideal when we want
an interpretable model. For interpretability, it is helpful to talk again about pivoted QR and
the closely-related interpolative decomposition (ID), in which we choose a subset of the data

5

Bindel, Spring 2025 Numerics for Data Science

matrix columns as a basis for the column space. We will also mention the closely-related CUR
decomposition, in which both the left and right factors in our approximation are drawn from
the columns and rows of the data matrix.

6

	Introduction
	Matrix factorizations and latent variables
	A gallery of examples
	Document search and latent semantic analysis
	k-means clustering as a matrix factorization
	Eigenfaces, fisherfaces, and image analysis
	Collaborative filtering and the Netflix challenge
	Anchor words and interpretable topic models

	Some basic factorization tools

