CS 6241: Numerics for Data Science

Stochastic grdients, scaling, and Neston

David Bindel
2025-02-04

Stochastic gradient methods

In the last half of the last lecture, we discussed the gradient descent iteration
it = 2k — 0, Vo (zF).

For small enough fixed a and nice enough ¢, we can guarantee that the error scales like
le¥| = O(p*) for some p < 1. This type of convergence is known by optimizers as (R)-linear
convergence, and in machine learning it is sometimes called geometric convergence. We also
saw last time that we can sometimes still obtain convergence results even when V¢(z¥) is not
computed exactly, as long as the errors in the gradient computation are controlled in some
way.

The stochastic gradient methods replace V() by a randomized estimator. These methods are

typically applied to objective functions that consist of a large number of independent terms,
e.g.

1 N
Bla) =+ > 6i(a)
i=1

In this case, we can randomly sample the ¢, in order to obtain an unbiased estimate of the
gradient, e.g.

V(z) = E;[Ve;(2)].
This estimator is unbiased, but the variance is high; in order to reduce the variance, one
sometimes uses randomly-selected “minibatches” of points

Vo(z) =E, [‘;‘ ZV¢¢<$)

ieJ

Let’s call such estimators g(z, &), where £ is a random variable that determines the selection
of data used in the estimator. Then the stochastic gradient algorithm is

M = a2k —ayg(a*, &)

Bindel, Spring 2025 Numerics for Data Science

What does the convergence of the stochastic gradient algorithm look like? For nice enough
functions and a sufficiently small fixed step size «, the expected values optimality gap behaves
like

Elp(a*) — ¢(a*)] < cra+ (1 — cp0) ™" (¢(2°) — (%))

That is, the expected optimality gap converges linearly, but not to zero! To get closer to the
true optimal value, we have to reduce the step size. Unfortunately, reducing the step size also
reduces the rate of convergence! We can balance the two effects by taking n steps with an
initial size of o, to get the error down to O(cy)), 2n, steps of size 27 ay to get the error down
to O(27'a), and so forth. This gives us a convergence rate of O(1/k). More generally, we can
get convergence with any (sufficiently small) schedule of step sizes such that

o0 o0
E Qy, = 00, E Oéz < 00.
k=1 k=1

There are a wide variety of methods for choosing the step sizes (“learning rate”), sometimes in
conjunction with methods to choose a better search direction than the (approximate) steepest
descent direction.

The O(1/k) rate of convergence for stochastic gradient descent is quite slow compared to the
rate of convergence for ordinary gradient descent. However, each step of a stochastic gradient
method may be much cheaper, so there is a tradeoff. The slow rate of the stochastic gradient
method comes from a combination of two effects: variance in the gradient estimates, and the
slow rate of gradient descent when the problem is ill-conditioned.

Scaling Steepest Descent

Let us put aside, for now, the stochastic methods and instead return to gradient descent. We
saw last time that with an optimal step size, the convergence of gradient descent on a positive
definite quadratic model problem behaves like

le*] < p*[le®ll, where p=1—O(k(A)™),

where kK(A) = A (A)/ALin(A) is the condition number of A. Hence, if k(A) is large (the
problem is ill-conditioned), then convergence can be quite slow. Sometimes slow convergence
is a blessing in disguise, as we saw last time, but sometimes we really do want a faster method.
What can we do?

A natural generalization of steepest descent is scaled steepest descent. In this iteration, we
choose a positive definite matrix M, and use the iteration

Pt =—M"1Vo(z")

k+1

ol = gk 4, p*.

Bindel, Spring 2025 Numerics for Data Science

The search direction p* is no longer the direction of steepest descent, but it is still a descent
direction; that is, if V¢(z*) # 0, then for small enough e,

P(z" + ep®) = ¢(a*) + eVo(a®)Tp* + O(e?) < ¢(a*)

since

Vo(z*)TpF = =Ve(a")TM~Ve(a*) <0
by positive definiteness of M 1.

The convergence for our quadratic model function

1
o(x) = §xTA;1: +bTr+c

is determined by the error iteration
el = (I —a,M~tA)ek.

In this case, the optimal choice of M and a would be M = A and « = 1; in this case, the
iteration converges in a single step! Of course, it is too much to ask for convergence in one
step when our objective is more complicated. Still, the quadratic model tells us a lot. If * is a
local strong minimum and ¢ is sufficiently smooth, we have the local Taylor approximation

B +2) = 9(a*) + 32T Hy(w")z + O(|2IF)

where H,(z*) is the Hessian matrix

0%¢(z
[Hy ()], = c‘kcdz(c%c])

For initial points 2" near enough to x*, we have
ehtl — ek — H¢(:U*)*1 [Vo(z* + e*) — Vo(z*)],

and substituting
Vé(x* + e*) — Vo(a*) = Hy(x*)ek + O(||e*|?),

we have
leP] = lle¥ — Hy(a*) " Hy(a*)er| + O([le¥]?) = O([le¥]?).

This is known as quadratic convergence.

Bindel, Spring 2025 Numerics for Data Science

Newton’s Method and Line Search

One problem with using H,(z") as a scaling matrix is that we don’t know where z* is — if we
did, we would have no need for an optimization algorithm! However, we can approximate this
optimal scaling. One natural choice is to scale with H ¢(ack); this gives us Newton’s method.
This method is equivalent to at every step solving the quadratic optimization problem

. 1
P = argunin, 6(%) + V() Tp + SpT Hy(ah)p.

Newton’s method has the disadvantage that we have a new scaling matrix at every step (and
so may need to do a new factorization), but it has the advantage that the approximation to
H ¢(x*) gets better and better as ¥ — z*. Indeed, this method is also locally quadratically
convergent.

Newton’s method converges very quickly once we are close to a strong minimizer z* such that
the Hessian is positive definite. But far away from z*, the problem may run into trouble in
two ways: we could have an indefinite Hessian matrix, so that the Newton direction is not a
descent direction; or a full Newton step might go too far, causing the iteration to diverge. To
deal with the issue of indefiniteness, we use an alternate scaling matrix when indefiniteness
is detected. For example, we might use H ¢(a:k) + A,1, which can always be made positive
definite with a sufficiently positive choice of A,. To deal with the issue of not taking too long
a step, we use a globalization technique; the two common approaches are trust regions or line
search. For simplicity, we will focus on the latter.

For step size choices for Newton and related iterations, we want to satisfy two conditions.
First, the step sizes should not go to zero, or at least they should not go to zero so quickly
that the iteration can misconverge. Second, there should be “sufficient decrease” at each step,
i.e. we want to satisfy the condition

P(z* + ayp®) < d(a*) + coar Vo (ah)Tp",

for some ¢ < 1. We typically choose ¢ quite small, so usually this condition is equivalent to
just making sure that ¢(x**1) is less than ¢(z¥). The simplest method to choose the step size
to satisfy these conditions is a backtracking line search: we start with a step size of one, then
repeatedly cut the step in half until the sufficient decrease condition holds.

Gauss-Newton

We turn now to another popular iterative solver: the Gauss-Newton method for nonlinear
least squares problems. Given f : R™ — R™ for m > n, we seek to minimize the objective
function

8(x) = U@,

Bindel, Spring 2025 Numerics for Data Science

The Gauss-Newton approach to this optimization is to approximate f by a first order Taylor
expansion in order to obtain a proposed step:

: 1 4 4
Py = argmin,, §||f<5'3k) + (@)pl? = —f ()).
Writing out the pseudo-inverse more explicitly, we have

pr =~ @) f ()] ()T f)
= —[f"(z)T f ()] Vo(zy).

The matrix f'(x;)T f/(x;) is positive definite if f/(z,) is full rank; hence, the direction p,
is always a descent direction provided z;, is not a stationary point and f’(x;) is full rank.
However, the Gauss-Newton step is not the same as the Newton step, since the Hessian of ¢

1S
m

Hy(x) = f'(2)"f'(x) + Y f;(2)Hy, ().

Jj=1

Thus, the Gauss-Newton iteration can be seen as a modified Newton in which we drop the
inconvenient terms associated with second derivatives of the residual functions f;.

Assuming f” is Lipschitz with constant L, an error analysis about a minimizer x, yields

lewial < LI (@) 21 (@Olllexl + OClexl?)-

Thus, if the optimal residual norm | f(x,)| is small, then from good initial guesses, Gauss-
Newton converges nearly quadratically (though the linear term will eventually dominate). On
the other had, if | f(x,)| is larger than |f’(z,)T|, then the iteration may not even be locally
convergent unless we apply some type of globalization strategy.

Regularization and Levenberg-Marquardt

While we can certainly apply line search methods to globalize Gauss-Newton iteration, an
alternate proposal due to Levenberg and Marquardt is to solve a regularized least squares
problem to compute the step; that is,

1 A
pi = axgmin, S|/ (w) + 1 (@)pl? + 51 Dpl”

The scaling matrix D may be an identity matrix (per Levenberg), or we may choose D? =
diag(f’(x,)T f'(z})) (as suggested by Marquardt).

For A = 0, the Levenberg-Marquardt step is the same as a Gauss-Newton step. As A becomes
large, though, we have the (scaled) gradient step

b=~ D2 f() + OX2)

Bindel, Spring 2025 Numerics for Data Science

Unlike Gauss-Newton with line search, changing the parameter X\ affects not only the distance
we move, but also the direction.

In order to get both ensure global convergence (under sufficient hypotheses on f, as usual)
and to ensure that convergence is not too slow, a variety of methods have been proposed that
adjust A dynamically. To judge whether A has been chosen too aggressively or conservatively,
we monitor the gain ratio, or the ratio of actual reduction in the objective to the reduction
predicted by the (Gauss-Newton) model:

o= |f(@)? = 1f (), + 2] '
[f@)l? = 1f () + f7 () pe]?

If the step decreases the function value enough (p is sufficiently positive), then we accept the
step; otherwise, we reject it. For the next step (or the next attempt), we may increase or
decrease the damping parameter A depending on whether p is close to one or far from one.

	Stochastic gradient methods
	Scaling Steepest Descent
	Newton's Method and Line Search
	Gauss-Newton
	Regularization and Levenberg-Marquardt

