
CS 6241: Numerics for Data Science
Sparse least squares and iterations

David Bindel

2025-01-30

Direct methods for large least squares

Our brief discussion of methods for least squares has so far focused on dense factorization
methods (normal equations with Cholesky, QR, and SVD). For 𝐴 ∈ ℝ𝑚×𝑛, these methods all
require 𝑂(𝑚𝑛2) time to set up the factorization and 𝑂(𝑚𝑛) time to solve the system for a
particular right hand sice. They also all require 𝑂(𝑚𝑛) space. What happens when either 𝑚
or 𝑛 is so large as to make this awkward? We consider a few scenarios:

• If 𝑚 is large but 𝑛 is not too large (say on the order of a few hundreds, or even 1000-
2000), we might still use a standard factorization, but arranged to be efficient on parallel
machines. The tall skinny QR (TSQR) approach involves breaking the observations
into groups and doing a factorization on each group, then recursively combining the
factorizations.

• In many cases with large 𝑛, the matrix 𝐴 is often sparse: that is, most of the entries
of 𝐴 might be zero. Sometimes, we have that 𝐴 is data-sparse: that is, it has special
structure that can be described with far fewer than 𝑚𝑛 parameters.

In the sparse case, we are sometimes able to use sparse direct methods. That is, if 𝐴 is sparse
(most of the elements are zero), we might be able to write an economy QR factorization 𝐴 = 𝑄𝑅
where 𝑅 is also sparse (the matrix 𝑄 is usually dense and therefore not saved, though we might
be able to store in compressed form as a product of simpler othogonal transformations). Sparse
QR isn’t always practical, as the 𝑅 factor is sometimes significantly denser than 𝐴. The order
of the columns in 𝐴 can make a huge difference in the sparsity of 𝑅, and so we typically would
seek a factorization 𝐴Π = 𝑄𝑅 where Π is a permutation matrix that reorders the columns.

Frequently, though, sparse direct methods are simply impractical. In this case, we turn to
iterative methods.

1

Bindel, Spring 2025 Numerics for Data Science

Iterative methods

We started with a discussion of direct methods for solving least squares problems based on
matrix factorizations. These methods have a well-understood running time, and they produce
a solution that is accurate except for roundoff effects. For larger or more complicated problems,
though, we turn to iterative methods that produce a series of approximation solutions.

We will turn now to iterative methods: gradient and stochastic gradient approaches, Newton
and Gauss-Newton, and (block) coordinate descent. We will see additional solver ideas as we
move through the class, but these are nicely prototypical examples that illustrate two running
themes in the design of numerical methods for optimization.

Fixed point iterations

All our nonlinear solvers (and some of our linear solvers) will be iterative. We can write most
as fixed point iterations

𝑥𝑘+1 = 𝐺(𝑥𝑘),
which we hope will converge to a fixed point, i.e. 𝑥∗ = 𝐺(𝑥∗). We often approach convergence
analysis through the error iteration relating the error 𝑒𝑘 = 𝑥𝑘 − 𝑥∗ at successive steps:

𝑒𝑘+1 = 𝐺(𝑥∗ + 𝑒𝑘) − 𝐺(𝑥∗).

Model-based methods

Most nonquadratic problems are too hard to solve directly. On the other hand, we can model
hard nonquadratic problems by simpler (possibly linear) problems as a way of building iterative
solvers. The most common tactic — but not the only one! — is to approximate the nonlinear
function by a linear or quadratic function and apply all the things we know about linear algebra.
We will return to this idea in when we discuss Newton-type methods for optimization.

Gradient descent

One very simple iteration is steepest descent or gradient descent:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝜙(𝑥𝑘)

where 𝛼𝑘 is the step size, chosen adaptively or with some fixed schedule.

To understand the convergence of this method, consider gradient descent with a fixed step size
𝛼 for the quadratic model problem

𝜙(𝑥) = 1
2𝑥𝑇 𝐴𝑥 + 𝑏𝑇 𝑥 + 𝑐

2

Bindel, Spring 2025 Numerics for Data Science

where 𝐴 is symmetric positive definite. We have computed the gradient for a quadratic be-
fore:

∇𝜙(𝑥) = 𝐴𝑥 + 𝑏,
which gives us the iteration equation

𝑥𝑘+1 = 𝑥𝑘 − 𝛼(𝐴𝑥𝑘 + 𝑏).

Subtracting the fixed point equation

𝑥∗ = 𝑥∗ − 𝛼(𝐴𝑥∗ + 𝑏)

yields the error iteration
𝑒𝑘+1 = (𝐼 − 𝛼𝐴)𝑒𝑘.

If {𝜆𝑗} are the eigenvalues of 𝐴, then the eigenvalues of 𝐼 − 𝛼𝐴 are {1 − 𝛼𝜆𝑗}. The spectral
radius of the iteration matrix is thus

max{|1 − 𝛼𝜆𝑗|}𝑗 = max (|1 − 𝛼𝜆min|, |1 − 𝛼𝜆max|) .

The iteration converges provided 𝛼 < 2/𝜆max, and the optimal 𝛼 is

𝛼∗ = 2
𝜆min + 𝜆max

,

which leads to the spectral radius

1 − 2𝜆min
𝜆min + 𝜆max

= 1 − 2
1 + 𝜅(𝐴)

where 𝜅(𝐴) = 𝜆max/𝜆min is the condition number for the (symmetric positive definite) matrix
𝐴. If 𝐴 is ill-conditioned, then, we are forced to take very small steps to guarantee convergence,
and convergence may be heart breakingly slow. We will get to the minimum in the long run

— but, then again, in the long run we all die.

The Benefits of Slow Convergence

How steepest descent behaves on a quadratic model is how it behaves generally: if 𝑥∗ is a
strong local minimizer of some general nonlinear 𝜙, then gradient descent with a small enough
step size will converge locally to 𝑥∗. But if 𝐻𝜙(𝑥∗) is ill-conditioned, then one has to take
small steps, and convergence can be quite slow.

Somewhat surprisingly, sometimes we want this slow convergence. To illustrate why, consider
the Landweber iteration, which is steepest descent iteration applied to linear least squares
problems:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝐴𝑇 (𝐴𝑥𝑘 − 𝑏).

3

Bindel, Spring 2025 Numerics for Data Science

If we start from the initial guess 𝑥0 = 0 and let the step size be a fixed value 𝛼𝑘 = 𝛼, we have
the subsequent steps

𝑥1 = 𝛼𝐴𝑇 𝑏
𝑥2 = (𝐼 − 𝛼𝐴𝑇 𝐴)𝛼𝐴𝑇 𝑏 + 𝛼𝐴𝑇 𝑏
𝑥3 = (𝐼 − 𝛼𝐴𝑇 𝐴)2𝛼𝐴𝑇 𝑏 + (𝐼 − 𝛼𝐴𝑇 𝐴)𝛼𝐴𝑇 𝑏 + 𝛼𝐴𝑇 𝑏

and so forth. That is, each step is a partial sum of a Neumann series, which is the matrix
generalization of the geometric series

𝑘
∑
𝑗=0

𝑧𝑗 = (1 − 𝑧𝑘+1)(1 − 𝑧)−1 → (1 − 𝑧)−1 as 𝑘 → ∞ for |𝑧| < 1.

Using the more concise expression for the partial sums of the Neumann series expansion, we
have

𝑥𝑘+1 =
𝑘

∑
𝑗=0

(𝐼 − 𝛼𝐴𝑇 𝐴)𝑗𝛼𝐴𝑇 𝑏

= (𝐼 − (𝐼 − 𝛼𝐴𝑇 𝐴)𝑘+1)(𝛼𝐴𝑇 𝐴)−1𝛼𝐴𝑇 𝑏
= (𝐼 − (𝐼 − 𝛼𝐴𝑇 𝐴)𝑘+1)𝐴†𝑏.

Alternately, we can write the iterates in terms of the singular value decomposition with a filter
for regularization:

𝑥𝑘+1 = 𝑉 Σ̃−1𝑈𝑇 𝑏, 𝜎̃−1
𝑗 = (1 − (1 − 𝛼𝜎2

𝑗)𝑘+1))𝜎−1
𝑗 .

Hence, rather than running the Landweber iteration to convergence, we typically stop when
𝑘 is large enough so that the filter is nearly the identity for large singular values, but is small
enough so that the influence of the small singular values is suppressed.

Preconditioning stationary iterations

While the slow convergence of iterations like Landweber has some surprising advantages, some-
times it is just a pain. However, we can speed up these transformations by preconditioning
the problem. That is, rather than applying the Landweber iteration to the problem

min
𝑥

‖𝐴𝑥 − 𝑏‖2

we instead consider
min

𝑥=𝑅−1𝑦
‖𝐴𝑅̃−1𝑦 − 𝑏‖2

where 𝑅̃−1 is easy to apply (e.g. because 𝑅̃ might be chosen to be upper triangular) and 𝐴𝑅̃−1

has a much smaller condition number than 𝐴. In the extreme case where 𝑅̃ is the 𝑅 factor

4

Bindel, Spring 2025 Numerics for Data Science

in a QR factorization of 𝐴, we would be able to solve the resulting problem by one step of
Landweber with step length one. But we can often do pretty well even when far from the case
where 𝐴𝑅̃−1 has orthonormal columns. This type of re-scaling of the problem to encourage
fast convergence is often called preconditioning.

Krylov subspace iterations

We now consider a more general class of iterative methods that accelerates the convergence of
methods like Landweber. There are many ways to derive these accelerated methods (Krylov
subspace methods). We deliberately choose a somewhat unorthodox description that highlights
the connections to other accelerated solvers we will encounter later in the class, as well as to
our final unit on learning dynamical systems from data.

Let’s momentarily consider the case of solving a linear system 𝐴𝑥 = 𝑏, keeping the special case
of the normal equations in the back of our minds. A stationary iteration has the form

𝑀𝑥𝑘+1 = 𝐾𝑥𝑘 + 𝑏

where 𝐴 = 𝑀 − 𝐾 is sometimes called a splitting. The typical way that we analyze such
iterations is to subtract the fixed point equation from the iteration, yielding

𝑀(𝑥𝑘+1 − 𝑥∗) = 𝐾(𝑥𝑘 − 𝑥∗)

or 𝑒𝑘+1 = (𝑀−1𝐾)𝑒𝑘 = (𝑀−1𝐾)𝑘𝑒0 where 𝑒𝑘 = 𝑥𝑘 − 𝑥∗ is the error at step 𝑘. The Landweber
iteration with fixed step size is an example of a stationary iteration.

Stationary iterations are an example of a linear time-invariant (LTI) dynamical system in
discrete time. The dynamics can be described entirely by the eigenvalue decomposition of
the iteration matrix 𝑅 = 𝑀−1𝐾. Even when the error is guaranteed to decay, general it
may decay quickly in some directions (associated with eigenvalues of small magnitude) and
slowly in others (associated with eigenvalues with magnitude near 1). We can get rid of the
slowly-decaying directions (also called modes) of the error by filtering them from the sequence.
Unfortunately, the simplest way to construct such a filter in advance involves knowing where
the eigenvalues of the iteration matrix lie, at least approximately, and that’s often tricky.

An alternative approach is to “learn” the filter from the data by considering all possible filtered
sequences, i.e. we consider

̃𝑥𝑘 =
𝑘

∑
𝑗=0

𝛽𝑗𝑘𝑥𝑘

for some to-be-determined set of coefficients 𝛽. Simplifying slightly by taking 𝑥0 = 0, we would
have that ̃𝑥𝑘 lies in the 𝑘 + 1-dimensional Krylov subspace

𝒦𝑘+1(𝑅, 𝑏) = sp{𝑏, 𝑅𝑏, 𝑅2𝑏, … , 𝑅𝑘𝑏} = {𝑝(𝑅)𝑏 ∶ 𝑝 ∈ 𝒫𝑘}

5

Bindel, Spring 2025 Numerics for Data Science

where 𝒫𝑘 is the space of polynomials of degree at most 𝑘.

It turns out that Krylov subspaces often contain very good approximations to the solution to
a linear system. Different Krylov subspace methods choose the “best” approximate solution
to 𝐴𝑥 = 𝑏 in a Krylov subspace using different criteria. When 𝐴 is symmetric and positive
definite, we might minimize a quadratic form 𝜙(𝑧) = 𝑧𝑇 𝐴𝑧/2−𝑧𝑇 𝑏 over the subspace; this gives
us the method of conjugate gradients (CG). Or we might minimize the residual ‖𝐴𝑧 − 𝑏‖ over
all 𝑧 in the subspace; this gives us the minimum residual method (MINRES) in the symmetric
case, or the generalized minimal residual method (GMRES) in the nonsymmetric case.

Applying CG and MINRES to the normal equations gives an algorithms that, while effective in
principle, are not as numerically stable as one might like. One can rearrange these algorithms
to get more stable versions specifically for least squares problems; CG in this setting is the
basis for LSQR, and MINRES is the basis for LMRES.

Gradient descent with errors

Before we turn to stochastic gradient descent, let us instead look at how to analyze gradient
descent with errors. In particular, consider the iteration

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑝𝑘

where
𝑝𝑘 = ∇𝜙(𝑥𝑘) + 𝑢𝑘

for some error 𝑢𝑘 that is “small.” As before, let’s keep things simple by looking how this
iteration behaves for a quadratic model problem with a fixed step size, i.e.

𝑥𝑘+1 = 𝑥𝑘 − 𝛼(𝐴𝑥𝑘 + 𝑏 + 𝑢𝑘).

Subtracting 𝑥∗ from both sides gives the error iteration

𝑒𝑘+1 = (𝐼 − 𝛼𝐴)𝑒𝑘 − 𝛼𝑢𝑘.

A little mumbling over the iteration gives us

𝑒𝑘+1 = (𝐼 − 𝛼𝐴)𝑘+1𝑒0 − 𝛼
𝑘

∑
𝑗=0

(𝐼 − 𝛼𝐴)𝑘−𝑗𝑢𝑗.

In order to analyze the second term in this iteration, we need some additional sort of control.
In the simplest case, that control might be deterministic. For example, if we can guarantee
that ‖𝑢𝑘‖ ≤ 𝐶𝛾−𝑘, then we have the bound

∥
𝑘

∑
𝑗=0

(𝐼 − 𝛼𝐴)𝑘−𝑗𝑢𝑗∥ ≤ 𝐶𝛾−𝑘
𝑘

∑
𝑗=0

(𝛾‖(𝐼 − 𝛼𝐴)‖)𝑘−𝑗 ≤ 𝐶𝛾−𝑘−1

1 − 𝛾‖𝐼 − 𝛼𝐴‖.

6

Bindel, Spring 2025 Numerics for Data Science

Hence, we can make the iteration converge with inaccurate gradients, as long as the accuracy
improves sufficiently quickly with time.

We will pick up this iteration again next time under the assumption that the errors are random,
which is what happens in the stochastic gradient method.

7

	Direct methods for large least squares
	Iterative methods
	Gradient descent
	The Benefits of Slow Convergence
	Preconditioning stationary iterations
	Krylov subspace iterations
	Gradient descent with errors

