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Bias-variance tradeoffs and regularization

At the end of the last class, we talked about generalization error for least squares in the
presence of noise. In particular, we saw that if there is a true linear model 𝐴𝑥 = 𝑏 and
we compute an estimate 𝐴1 ̂𝑥 = 𝑏̂1 involving a subset of the data with noisy measurements
(𝑏̂1 = 𝑏1 + 𝑒), then

‖𝐴𝑥 − 𝐴 ̂𝑥‖ ≤ ‖𝐴𝐴†
1‖‖𝑒‖ ≤ ‖𝐴‖‖𝐴†

1‖‖𝑒‖.
We cannot generally overcome the effects of the measurement error, but we can at least hope
not to amplify them. The amplification factor ‖𝐴‖‖𝐴†

1‖ could be large if ‖𝐴‖ is large, but a more
common problem is that ‖𝐴†

1‖ is large. In numerical analysis, we might call this a problem
with ill-conditioning; in statistics, we might refer to this as an issue with high variance in the
estimator.

More generally, suppose we have 𝑦 = 𝑓(𝑥) + 𝜖 where 𝜖 is a noise term with mean zero and
variance 𝜎2, and we use data 𝑦 to fit an estimator function ̂𝑓(𝑥). Then for an unseen point
𝑥

𝔼[(𝑦 − ̂𝑓(𝑥))2] = 𝔼[ ̂𝑓(𝑥) − 𝑓(𝑥)]2 + Var[ ̂𝑓(𝑥)] + 𝜎2;
that is, the squared error involves the squared bias (caused by inability of the model to fit
the function even with perfect data); the variance (associated with stability of the estimation
procedure under perturbations from noise); and a term associated with measurement error.

If we have an ill-conditioned fitting problem (or a high variance estimator, if you prefer), what
should we do? There are three options:

1. Get more data.

2. Reduce the noise.

3. Change the fitting problem to reduce the ill-conditioning.
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Getting more data or reducing the noise is not always practical or economical, and in any
event is an issue unrelated to numerical methods. Thus, we will turn now to the last approach:
regularizing the problem to reduce the ill-conditioning, possibly at the expense of a small
bias.

Factor selection and pivoted QR

In ill-conditioned problems, the columns of 𝐴 are nearly linearly dependent; we can effectively
predict some columns as linear combinations of other columns. The goal of the column pivoted
QR algorithm is to find a set of columns that are “as linearly independent as possible.” This
is not such a simple task, and so we settle for a greedy strategy: at each step, we select the
column that is least well predicted (in the sense of residual norm) by columns already selected.
This leads to the pivoted QR factorization

𝐴Π = 𝑄𝑅

where Π is a permutation and the diagonal entries of 𝑅 appear in descending order (i.e. 𝑟11 ≥
𝑟22 ≥ …). To decide on how many factors to keep in the factorization, we either automatically
take the first 𝑘 or we dynamically choose to take 𝑘 factors where 𝑟𝑘𝑘 is greater than some
tolerance and 𝑟𝑘+1,𝑘+1 is not.

The pivoted QR approach has a few advantages. It yields parsimonious models that predict
from a subset of the columns of 𝐴 – that is, we need to measure fewer than 𝑛 factors to
produce an entry of 𝑏 in a new column. It can also be computed relatively cheaply, even for
large matrices that may be sparse.

Tikhonov

A second approach is to say that we want a model in which the coefficients are not too large.
To accomplish this, we add a penalty term to the usual least squares problem:

minimize ‖𝐴𝑥 − 𝑏‖2 + 𝜆2‖𝑥‖2.

Equivalently, we can write

minimize ∥[ 𝐴
𝜆𝐼] 𝑥 − [𝑏

0]∥
2

,

which leads to the regularized version of the normal equations

(𝐴𝑇 𝐴 + 𝜆2𝐼)𝑥 = 𝐴𝑇 𝑏.
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In some cases, we may want to regularize with a more general norm ‖𝑥‖2
𝑀 = 𝑥𝑇 𝑀𝑥 where 𝑀

is symmetric and positive definite, which leads to the regularized equations
(𝐴𝑇 𝐴 + 𝜆2𝑀)𝑥 = 𝐴𝑇 𝑏.

If we know of no particular problem structure in advance, the standard choice of 𝑀 = 𝐼 is a
good default.

It is useful to compare the usual least squares solution to the regularized solution via the SVD.
If 𝐴 = 𝑈Σ𝑉 𝑇 is the economy SVD, then

𝑥𝐿𝑆 = 𝑉 Σ−1𝑈𝑇 𝑏
𝑥𝑇 𝑖𝑘 = 𝑉 𝑓(Σ)−1𝑈𝑇 𝑏

where
𝑓(𝜎)−1 = 𝜎

𝜎2 + 𝜆2 .
This filter of the inverse singular values affects the larger singular values only slightly, but
damps the effect of very small singular values.

Truncated SVD

The Tikhonov filter reduces the effect of small singular values on the solution, but it does not
eliminate that effect. By contrast, the truncated SVD approach uses the filter

𝑓(𝑧) = {𝑧, 𝑧 > 𝜎min

∞, otherwise.
In other words, in the truncated SVD approach, we use

𝑥 = 𝑉𝑘Σ−1
𝑘 𝑈𝑇

𝑘 𝑏
where 𝑈𝑘 and 𝑉𝑘 represent the leading 𝑘 columns of 𝑈 and 𝑉 , respectively, while Σ𝑘 is the
diagonal matrix consisting of the 𝑘 largest singular values.

ℓ1 and the lasso

An alternative to Tikhonov regularization (based on a Euclidean norm of the coefficient vector)
is an ℓ1 regularized problem

minimize ‖𝐴𝑥 − 𝑏‖2 + 𝜆‖𝑥‖1.
This is sometimes known as the “lasso” approach. The ℓ1 regularized problem has the property
that the solutions tend to become sparse as 𝜆 becomes larger. That is, the ℓ1 regularization
effectively imposes a factor selection process like that we saw in the pivoted QR approach.
Unlike the pivoted QR approach, however, the ℓ1 regularized solution cannot be computed by
one of the standard factorizations of numerical linear algebra.
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Tradeoffs and tactics

All four of the regularization approaches we have described are used in practice, and each
has something to recommend it. The pivoted QR approach is relatively inexpensive, and
it results in a model that depends on only a few factors. If taking the measurements to
compute a prediction costs money — or even costs storage or bandwidth for the factor data!

— such a model may be to our advantage. The Tikhonov approach is likewise inexpensive,
and has a nice Bayesian interpretation (though we didn’t talk about it). The truncated SVD
approach involves the best approximation rank 𝑘 approximation to the original factor matrix,
and can be interpreted as finding the 𝑘 best factors that are linear combinations of the original
measurements. The ℓ1 approach again produces models with sparse coefficients; but unlike QR
with column pivoting, the ℓ1 regularized solutions incorporate information about the vector 𝑏
along with the matrix 𝐴.

So which regularization approach should one use? In terms of prediction quality, all can
provide a reasonable deterrent against ill-posedness and overfitting due to highly correlated
factors. Also, all of the methods described have a parameter (the number of retained factors,
or a penalty parameter 𝜆) that governs the tradeoff between how well-conditioned the fitting
problem will be and the increase in bias that naturally comes from looking at a smaller class
of models. Choosing this tradeoff intelligently may be rather more important than the specific
choice of regularization strategy. A detailed discussion of how to make this tradeoff is beyond
the scope of the class; but we will see some of the computational tricks involved in implementing
specific strategies for choosing regularization parameters before we are done.
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