
CS 6241: Numerics for Data Science
Optimization and LA refresher

David Bindel

2025-01-23

Optimality conditions

In an unconstrained problem with a differentiable objective function, a necessary (but not
sufficient) condition for 𝑥∗ to be a local minimizer is that 𝜙′(𝑥∗) = 0. For intuition, picture
a function 𝜙 ∶ ℝ𝑛 → ℝ; if you’d like to be concrete, let 𝑛 = 2. Absent a computer, we might
optimize 𝜙 by the physical experiment of dropping a tiny ball onto the surface and watching it
roll downhill (in the steepest descent direction) until it reaches the minimum. The statement
that 𝜙′(𝑥∗) = 0 (or that ∇𝜙(𝑥∗) = 0) basically means the function looks flat at 𝑥∗ to a
sufficiently near-sighted observer; if 𝜙′(𝑥∗) is not zero, then 𝑥∗ − 𝜖∇𝜙(𝑥∗) will be a little bit
“downhill” of 𝑥∗; that is, if ‖∇𝜙(𝑥∗)‖ ≠ 0 then

𝜙(𝑥∗ − 𝜖∇𝜙(𝑥∗)) = 𝜙(𝑥∗) − 𝜖‖∇𝜙(𝑥∗)‖2 + 𝑜(𝜖) < 𝜙(𝑥∗)

for sufficiently small 𝜖.
Most students learn the first-order optimality conditions for unconstrained optimization in
a first course, but sometimes that course gets everyone too stuck on the idea of computing
a gradient. What is really happening is that the function should be “flat in all directions,”
i.e. all directional derivatives are zero. This is equivalent to the statement that the gradient is
zero, of course, but sometimes it is notationally easier to check that an arbitrary directional
derivative is zero than to try to write down the gradient. For example, consider the quadratic
objective

𝜙(𝑥) = 1
2𝑥𝑇 𝐴𝑥 + 𝑥𝑇 𝑏 + 𝑐.

Now, we will write an arbitrary directional derivative of 𝜙 in terms of “variational notation”
(described in the background notes):

𝛿𝜙(𝑥) = 𝑑
𝑑𝜖∣

𝜖=0
𝜙(𝑥 + 𝜖𝛿𝑥) = (𝛿𝑥)𝑇 (𝐴𝑥 + 𝑏).

1

Bindel, Spring 2025 Numerics for Data Science

At a critical point, 𝛿𝜙(𝑥) should be zero for any choice of 𝛿𝑥, so the stationary point occurs
at 𝐴𝑥∗ + 𝑏 = 0. There is a unique minimizer 𝑥∗ if 𝐴 is positive definite. When the number of
variables is not too large — up to a few thousand, say — we might solve this system of linear
equations directly using a variant of Gaussian elimination if we wanted to find the minimizer.
When the number of variables is much larger, we may prefer to use an iterative method to
solve the system, e.g. the method of conjugate gradients (CG). This method can be interpreted
either as an iterative solver for linear equations or as an iterative optimization method.

Now let’s turn to the constrained case. Rather than repeating the formal derivation of the
first-order constrained optimality conditions that you have likely seen before, let me again give
you an interpretation that involves some physical intuition. For the unconstrained case, we
thought about solving the problem by rolling a tiny ball down hill until it came to rest. If
we wanted to solve a constrained minimization problem, we could build a great wall between
the feasible and the infeasible region. A ball rolling into the wall would still roll freely in
directions tangent to the wall (or away from the wall) if those directions were downhill; at a
constrained miminizer, the force pulling the ball downhill would be perfectly balanced against
an opposing force pushing into the feasible region in the direction of the normal to the wall.
If the feasible region is {𝑥 ∶ 𝑐(𝑥) ≤ 0}, the normal direction pointing inward at a boundary
point 𝑥∗ s.t. 𝑐(𝑥∗) = 0 is proportional to −∇𝑐(𝑥∗). Hence, if 𝑥∗ is a constrained minimum, we
expect the sum of the “rolling downhill” force (−∇𝜙) and something proportional to −∇𝑐(𝑥∗)
to be zero:

−∇𝜙(𝑥∗) − 𝜇∇𝑐(𝑥∗) = 0.
The Lagrange multiplier 𝜇 in this picture represents the magnitude of the restoring force from
the wall balancing the tendency to roll downhill.

More abstractly, and more generally, suppose that we have a mix of equality and inequality
constraints. We define the augmented Lagrangian

𝐿(𝑥, 𝜆, 𝜇) = 𝜙(𝑥) + ∑
𝑖∈ℰ

𝜆𝑖𝑐𝑖(𝑥) + ∑
𝑖∈ℐ

𝜇𝑖𝑐𝑖(𝑥).

The Karush-Kuhn-Tucker (KKT) conditions for 𝑥∗ to be a constrained minimizer are

∇𝑥𝐿(𝑥∗) = 0
𝑐𝑖(𝑥∗) = 0, 𝑖 ∈ ℰ equality constraints
𝑐𝑖(𝑥∗) ≤ 0, 𝑖 ∈ ℐ inequality constraints

𝜇𝑖 ≥ 0, 𝑖 ∈ ℐ non-negativity of multipliers
𝑐𝑖(𝑥∗)𝜇𝑖 = 0, 𝑖 ∈ ℐ complementary slackness

where the (negative of) the “total force” at 𝑥∗ is

∇𝑥𝐿(𝑥∗) = ∇𝜙(𝑥∗) + ∑
𝑖∈ℰ

𝜆𝑖∇𝑐𝑖(𝑥∗) + ∑
𝑖∈ℐ

𝜇𝑖∇𝑐𝑖(𝑥∗).

2

Bindel, Spring 2025 Numerics for Data Science

The complementary slackness condition corresponds to the idea that a multiplier should be
nonzero only if the corresponding constraint is active (a “restoring force” is only present if our
test ball is pushed into a wall).

Like the critical point equation in the unconstrained case, the KKT conditions define a set
of (necessary but not sufficient) nonlinear algebraic equations that must be satisfied at a
minimizer. I like to think about the “rolling downhill” intuition for these necessary conditions
because it suggests a way of thinking about numerical methods.

For completeness, we will say a few brief words about the second-order sufficient conditions
for optimality. In the unconstrained case, 𝑥∗ is a strong local minimizer of 𝜙 if ∇𝜙(𝑥∗) = 0
and the Hessian matrix 𝐻𝜙 is positive definite; that is because in this case 𝑥∗ is the strong
minimizer of the quadratic approximation

𝜙(𝑥) ≈ 𝜙(𝑥∗) + 1
2(𝑥 − 𝑥∗)𝑇 𝐻𝜙(𝑥∗)(𝑥 − 𝑥∗).

In the constrained case, the Hessian only needs to be positive definite for those 𝑢 that are
orthogonal to ∇𝑐𝑖(𝑥∗) for each 𝑐𝑖 that is active (has a nonzero Lagrange multiplier). We will
see this idea in two weeks when we talk about kernel methods, and in particular talk about
the idea of a conditionally positive definite kernel function.

Numerical methods

With our lightning review of some fundamental theory out of the way, it is time for a lightning
overview of some numerical methods! We will see additional solver ideas as we move through
the semester, but these are nicely prototypical examples that illustrate two running themes in
the design of numerical methods for optimization.

Fixed point iterations

All our optimizers and nonlinear solvers (and some of our linear solvers) will be iterative. We
can write most as fixed point iterations

𝑥𝑘+1 = 𝐺(𝑥𝑘),
which we hope will converge to a fixed point, i.e. 𝑥∗ = 𝐺(𝑥∗). We often approach convergence
analysis through the error iteration relating the error 𝑒𝑘 = 𝑥𝑘 − 𝑥∗ at successive steps:

𝑒𝑘+1 = 𝐺(𝑥∗ + 𝑒𝑘) − 𝐺(𝑥∗).

As a teaser for this sort of analysis, consider one of the simplest algorithms I know: gradient
descent with a fixed step size ℎ, applied to the quadratic model problem

𝜙(𝑥) = 1
2𝑥𝑇 𝐴𝑥 + 𝑏𝑇 𝑥 + 𝑐

3

Bindel, Spring 2025 Numerics for Data Science

where 𝐴 is assumed to be symmetric and positive definite. The algorithm produces iterates

𝑥𝑘+1 = 𝑥𝑘 − ℎ∇𝜙(𝑥𝑘)
= 𝑥𝑘 − ℎ(𝐴𝑥𝑘 + 𝑏)
= (𝐼 − ℎ𝐴)𝑥𝑘 − ℎ𝑏.

Now we subtract the fixed point equation for the true solution 𝑥∗ in order to get an error
iteration:

[𝑥𝑘+1 = (𝐼 − ℎ𝐴)𝑥𝑘 − ℎ𝑏]
−[𝑥∗ = (𝐼 − ℎ𝐴)𝑥∗ − ℎ𝑏]
=[𝑒𝑘+1 = (𝐼 − ℎ𝐴)𝑒𝑘]

where 𝑒𝑘 = 𝑥𝑘 − 𝑥∗. The error iteration converges iff the largest eigenvalue of 𝐴 is less than
2ℎ−1; if this condition is satisfied, then

‖𝑒𝑘+1‖ ≤ (1 − ℎ𝜆max(𝐴))‖𝑒𝑘‖

and so we have ‖𝑒𝑘+1‖ ≤ (1 − ℎ𝜆max(𝐴))𝑘+1‖𝑒0‖, a convergence rate which is known as (R)-
linear convergence or as geometric convergence, depending on which corner of the literature
one prefers to read.

Model-based methods

Most nonquadratic problems are too hard to solve directly. On the other hand, we can model
hard nonquadratic problems by simpler (possibly linear) problems as a way of building iterative
solvers. The most common tactic — but not the only one! — is to approximate the nonlinear
function by a linear or quadratic function and apply all the things we know about linear
algebra. We will return to this idea in the next lecture when we discuss Newton-type methods
for optimization.

Cricket chirps: an example

Did you know that you can estimate the temperature by listening to the rate of chirps? The
data set in Table 1 1. represents measurements of the number of chirps (over 15 seconds)
of a striped ground cricket at different temperatures measured in degrees Farenheit. A plot
(Figure 1) shows that the two are roughly correlated: the higher the temperature, the faster
the crickets chirp. We can quantify this by attempting to fit a linear model

temperature = 𝛼 ⋅ chirps + 𝛽 + 𝜖

1Data set originally attributed to http://mste.illinois.edu

4

http://mste.illinois.edu

Bindel, Spring 2025 Numerics for Data Science

where 𝜖 is an error term. To solve this problem by standard linear regression, we minimize the
least squares norm residual

𝑟 = 𝑏 − 𝐴𝑥
where

𝑏𝑖 = temperature in experiment 𝑖
𝐴𝑖1 = chirps in experiment 𝑖
𝐴𝑖2 = 1

𝑥 = [𝛼
𝛽]

Assuming the measurement error 𝜖 is Gaussian, the least squares procedure gives the maximum
likelihood estimate estimate for 𝛼 and 𝛽.

MATLAB and Octave are capable of solving least squares problems using the backslash oper-
ator; that is, if chirps and temp are column vectors in MATLAB, we can solve this regression
problem as

A = [chirps, ones(ndata,1)];
x = A\temp;

Cricket chirps vs. temperature and a model fit via linear regression.

Table 1: Cricket data: Chirp count over a 15 second period vs. temperature in degrees Faren-
heit.

Chirp 20 16 20 18 17 16 15 17 15 16 15 17 16 17 14
Temp 89 72 93 84 81 75 70 82 69 83 80 83 81 84 76

In more complex examples, we want to fit a model involving more than two variables. This
still leads to a linear least squares problem, but one in which 𝐴 may have more than one or two
columns. We also use linear least squares problems as a building block for more complex fitting
procedures, including fitting nonlinear models and models with more complicated objective
functions.

Normal equations

Picture of a linear least squares problem. The vector Ax is the closest vector in �(A) to a target
vector b in the Euclidean norm. Consequently, the residual r = b − Ax is normal (orthogonal)
to �(A).

5

Bindel, Spring 2025 Numerics for Data Science

The linear least squares problem is a quadratic optimization problem, and we have already seen
that we can write down the solution to such problems in terms of linear systems of equations.
When we minimize the Euclidean norm of 𝑟 = 𝑏 − 𝐴𝑥, we find that 𝑟 is normal to everything
in the range space of 𝐴 (Figure 2):

𝑏 − 𝐴𝑥 ⟂ ℛ(𝐴),

or, equivalently, for all 𝑧 ∈ ℝ𝑛 we have

0 = (𝐴𝑧)𝑇 (𝑏 − 𝐴𝑥) = 𝑧𝑇 (𝐴𝑇 𝑏 − 𝐴𝑇 𝐴𝑥).

The statement that the residual is orthogonal to everything in ℛ(𝐴) thus leads to the normal
equations

𝐴𝑇 𝐴𝑥 = 𝐴𝑇 𝑏.
To see why this is the right system, suppose 𝑥 satisfies the normal equations and let 𝑦 ∈ ℝ𝑛

be arbitrary. Using the fact that 𝑟 ⟂ 𝐴𝑦 and the Pythagorean theorem, we have

‖𝑏 − 𝐴(𝑥 + 𝑦)‖2 = ‖𝑟 − 𝐴𝑦‖2 = ‖𝑟‖2 + ‖𝐴𝑦‖2 > 0.

The inequality is strict if 𝐴𝑦 ≠ 0; and if the columns of 𝐴 are linearly independent, 𝐴𝑦 = 0 is
equivalent to 𝑦 = 0.

We can also reach the normal equations by calculus. Define the least squares objective func-
tion:

𝐹(𝑥) = ‖𝐴𝑥 − 𝑏‖2 = (𝐴𝑥 − 𝑏)𝑇 (𝐴𝑥 − 𝑏) = 𝑥𝑇 𝐴𝑇 𝐴𝑥 − 2𝑥𝑇 𝐴𝑇 𝑏 + 𝑏𝑇 𝑏.
The minimum occurs at a stationary point; that is, for any perturbation 𝛿𝑥 to 𝑥 we have

𝛿𝐹 = 2𝛿𝑥𝑇 (𝐴𝑇 𝐴𝑥 − 𝐴𝑇 𝑏) = 0;

equivalently, ∇𝐹(𝑥) = 2(𝐴𝑇 𝐴𝑥 − 𝐴𝑇 𝑏) = 0 — the normal equations again!

A family of factorizations

If 𝐴 is full rank, then 𝐴𝑇 𝐴 is symmetric and positive definite matrix, and the normal equations
have a unique solution

𝑥 = 𝐴†𝑏 where 𝐴† = (𝐴𝑇 𝐴)−1𝐴𝑇 .
The matrix 𝐴† ∈ ℝ𝑛×𝑚 is the Moore-Penrose pseudoinverse. If 𝑚 = 𝑛, the pseudoinverse
and the inverse are the same. For 𝑚 > 𝑛, the Moore-Penrose pseudoinverse has the property
that

𝐴†𝐴 = 𝐼;
and

Π = 𝐴𝐴† = 𝑄1𝑄𝑇
1 = 𝑈1𝑈𝑇

1

6

Bindel, Spring 2025 Numerics for Data Science

is the orthogonal projector that maps each vector to the closest vector (in the Euclidean norm)
in the range space of 𝐴.

Even for small least squares problems, we do not work with the Moore-Penrose pseudoinverse
directly, just as we do not compute explicit inverses of square matrices. Instead, we use
different matrix factorizations to solve the problem. For least squares problems, the three
main factorizations are Cholesky, QR, and SVD. Each of these methods costs 𝑂(𝑛2𝑚) time
to set up a factorization to apply the pseudoinverse, then 𝑂(𝑛𝑚) time per right hand side to
actually complete the solve for a given right hand side.

Cholesky

If 𝐴 is full rank, then 𝐴𝑇 𝐴 is symmetric and positive definite matrix, and we can compute a
Cholesky factorization of 𝐴𝑇 𝐴:

𝐴𝑇 𝐴 = 𝑅𝑇 𝑅,
where 𝑅 is an upper triangular matrix. The solution to the least squares problem is then

𝑥 = (𝐴𝑇 𝐴)−1𝐴𝑇 𝑏 = 𝑅−1𝑅−𝑇 𝐴𝑇 𝑏,

or, in MATLAB world

R = chol(A'*A, 'upper');
x = R\(R'\(A'*b));

Economy QR

The Cholesky factor 𝑅 appears in a different setting as well. Let us write 𝐴 = 𝑄𝑅 where
𝑄 = 𝐴𝑅−1; then

𝑄𝑇 𝑄 = 𝑅−𝑇 𝐴𝑇 𝐴𝑅−1 = 𝑅−𝑇 𝑅𝑇 𝑅𝑅−1 = 𝐼.
That is, 𝑄 is a matrix with orthonormal columns. This “economy QR factorization” can be
computed in several different ways, including one that you have seen before in a different guise
(the Gram-Schmidt process). MATLAB provides a numerically stable method to compute the
QR factorization via

[Q,R] = qr(A,0);

and we can use the QR factorization directly to solve the least squares problem without forming
𝐴𝑇 𝐴 by

[Q,R] = qr(A,0);
x = R\(Q'*b);

7

Bindel, Spring 2025 Numerics for Data Science

Full QR

There is an alternate “full” QR decomposition where we write

𝐴 = 𝑄𝑅, where 𝑄 = [𝑄1 𝑄2] ∈ ℝ𝑚×𝑚, 𝑅 = [𝑅1
0] ∈ ℝ𝑚×𝑛.

To see how this connects to the least squares problem, recall that the Euclidean norm is
invariant under orthogonal transformations, so

‖𝑟‖2 = ‖𝑄𝑇 𝑟‖2 = ∥[𝑄𝑇
1 𝑏

𝑄𝑇
2 𝑏] − [𝑅1

0] 𝑥∥
2

= ‖𝑄𝑇
1 𝑏 − 𝑅1𝑥‖2 + ‖𝑄𝑇

2 𝑏‖2.

We can set ‖𝑄𝑇
1 𝑣 − 𝑅1𝑥‖2 to zero by setting 𝑥 = 𝑅−1

1 𝑄𝑇
1 𝑏; the result is ‖𝑟‖2 = ‖𝑄𝑇

2 𝑏‖2.

SVD

The full QR decomposition is useful because orthogonal transformations do not change lengths.
Hence, the QR factorization lets us change to a coordinate system where the problem is simple
without changing the problem in any fundamental way. The same is true of the SVD, which
we write as

𝐴 = [𝑈1 𝑈2] [Σ
0] 𝑉 𝑇 Full SVD

= 𝑈1Σ𝑉 𝑇 Economy SVD.
As with the QR factorization, we can apply an orthogonal transformation involving the factor
𝑈 that makes the least squares residual norm simple:

‖𝑈𝑇 𝑟‖2 = ∥[𝑈𝑇
1 𝑏

𝑈𝑇
2 𝑏] − [Σ𝑉 𝑇

0] 𝑥∥ = ‖𝑈𝑇
1 𝑏 − Σ𝑉 𝑇 𝑥‖2 + ‖𝑈𝑇

2 𝑏‖2,

and we can minimize by setting 𝑥 = 𝑉 Σ−1𝑈𝑇
1 𝑏.

A cautionary tale

We now know how to solve linear least squares problems, at least those that are not too large.
We might want to savor the feeling of accomplishment, but a cautionary note is in order. We
will illustrate with another example.

Suppose you have been dropped on a desert island with a laptop with a magic battery of
infinite life, a MATLAB license, and a complete lack of knowledge of basic geometry. In
particular, while you know about least squares fitting, you have forgotten how to compute the

8

Bindel, Spring 2025 Numerics for Data Science

perimeter of a square. You vaguely feel that it ought to be related to the perimeter or side
length, though, so you set up the following model:

perimeter = 𝛼 ⋅ side length + 𝛽 ⋅ diagonal.

After measuring several squares, you set up a least squares system 𝐴𝑥 = 𝑏; with your real eyes,
you know that this must look like

𝐴 = [𝑠
√

2𝑠] , 𝑏 = 4𝑠

where 𝑠 is a vector of side lengths. The normal equations are therefore

𝐴𝑇 𝐴 = ‖𝑠‖2 [1
√

2√
2 2] , 𝐴𝑇 𝑏 = ‖𝑠‖2 [4

4
√

2] .

This system does have a solution; the problem is that it has far more than one. The equations
are singular, but consistent. We have no data that would lead us to prefer to write 𝑝 = 4𝑠 or
𝑝 = 2

√
2𝑑 or something in between. The fitting problem is ill-posed.

We deliberately started with an extreme case, but some ill-posedness is common in least squares
problems. As a more natural example, suppose that we measure the height, waist girth, chest
girth, and weight of a large number of people, and try to use these factors to predict some
other factor such as proclivity to heart disease. Naive linear regression – or any other naively
applied statistical estimation technique – is likely to run into trouble, as the height, weight,
and girth measurements are highly correlated. It is not that we cannot fit a good linear model;
rather, we have too many models that are each almost as good as the others at fitting the
data! We need a way to choose between these models, and this is the point of regularization.

Bias-variance tradeoffs

Least squares is often used to fit a model to be used for prediction in the future. In learning
theory, there is a notion of bias-variance decomposition of the prediction error: the prediction
error consists of a bias term due to using a space of models that does not actually fit the data,
and a term that is related to variance in the model as a function of measurement noise on the
input. These are concepts that we can connect concretely to the type of sensitivity analysis
common in numerical analysis, a task we turn to now.

Suppose 𝐴 ∈ ℝ𝑀×𝑛 is a matrix of factors that we wish to use in predicting the entries of
𝑏 ∈ ℝ𝑀 via the linear model

𝐴𝑥 ≈ 𝑏.
We partition 𝐴 and 𝑏 into the first 𝑚 rows (where we have observations) and the remaining
𝑀 − 𝑚 rows (where we wish to use the model for prediction):

𝐴 = [𝐴1
𝐴2

] , 𝑏 = [𝑏1
𝑏𝑒

]

9

Bindel, Spring 2025 Numerics for Data Science

If we could access all of 𝑏, we would compute 𝑥 by the least square problem

𝐴𝑥 = 𝑏 + 𝑟, 𝑟 ⟂ ℛ(𝐴).
In practice, we are given only 𝐴1 and 𝑏1 + 𝑒 where 𝑒 is a vector of random errors, and we fit
the model coefficients ̂𝑥 by solving

minimize ‖𝐴1 ̂𝑥 − (𝑏1 + 𝑒)‖2.
Our question, then: what is the least squared error in using ̂𝑥 for prediction, and how does
it compare to the best error possible? That is, what is the relation between ‖𝐴 ̂𝑥 − 𝑏‖2 and
‖𝑟‖2?

Note that
𝐴 ̂𝑥 − 𝑏 = 𝐴(̂𝑥 − 𝑥) + 𝑟

and by the Pythagorean theorem and orthogonality of the residual,

‖𝐴 ̂𝑥 − 𝑏‖2 = ‖𝐴(̂𝑥 − 𝑥)‖2 + ‖𝑟‖2.
The term ‖ ̂𝑟‖2 is the (squared) bias term, the part of the error that is due to lack of power in
our model. The term ‖𝐴(̂𝑥 − 𝑥)‖2 is the variance term, and is associated with sensitivity of
the fitting process. If we dig further into this, we can see that

𝑥 = 𝐴†
1(𝑏1 + 𝑟1) ̂𝑥 = 𝐴†

1(𝑏1 + 𝑒),
and so

‖𝐴(̂𝑥 − 𝑥)‖2 = ‖𝐴𝐴†
1(𝑒 − 𝑟1)‖2

Taking norm bounds, we find

‖𝐴(̂𝑥 − 𝑥)‖ ≤ ‖𝐴‖‖𝐴†
1‖(‖𝑒‖ + ‖𝑟1‖),

and putting everything together,

‖𝐴 ̂𝑥 − 𝑏‖ ≤ (1 + ‖𝐴‖‖𝐴†
1‖)‖𝑟‖ + ‖𝐴‖‖𝐴†

1‖‖𝑒‖.
If there were no measurement error 𝑒, we would have a quasi-optimality bound saying that the
squared error in prediction via ̂𝑥 is within a factor of 1 + ‖𝐴‖‖𝐴†

1‖ of the best squared error
available for any similar model. If we scale the factor matrix 𝐴 so that ‖𝐴‖ is moderate in size,
everything boils down to ‖𝐴†

1‖.
When ‖𝐴†

1‖ is large, the problem of fitting to training data is ill-posed, and the accuracy
can be compromised. What can we do? As we discussed in the last section, the problem
with ill-posed problems is that they admit many solutions of very similar quality. In order
to distinguish between these possible solutions to find a model with good predictive power,
we consider regularization: that is, we assume that the coefficient vector 𝑥 is not too large in
norm, or that it is sparse. Different statistical assumptions give rise to different regularization
strategies; for the current discussion, we shall focus on the computational properties of a few
of the more common regularization strategies without going into the details of the statistical
assumptions. In particular, we consider four strategies in turn

10

Bindel, Spring 2025 Numerics for Data Science

1. Factor selection via pivoted QR.

2. Tikhonov regularization and its solution.

3. Truncated SVD regularization.

4. ℓ1 regularization or the lasso.

We will also discuss regularization via iteration as part of our discussion of iterative methods
next time.

11

	Optimality conditions
	Numerical methods
	Cricket chirps: an example
	Normal equations
	A family of factorizations
	Cholesky
	Economy QR
	Full QR
	SVD

	A cautionary tale
	Bias-variance tradeoffs

