
CS 6241: Numerics for Data Science
Introduction

David Bindel

2025-01-21

Introduction

The title of this course is “Numerical Methods for Data Science.” What does that mean?
Before we dive into the course technical material, let’s put things into context. I will not
attempt to completely define either “numerical methods” or “data science,” but will at least
give some thoughts on each.

Numerical methods are algorithms that solve problems of continuous mathematics: finding
solutions to systems of linear or nonlinear equations, minimizing or maximizing functions,
computing approximations to functions, simulating how systems of differential equations evolve
in time, and so forth. Numerical methods are used everywhere, and many mathematicians
and scientists focus on designing these methods, analyzing their properties, adapting them
to work well for specific types of problems, and implementing them to run fast on modern
computers. Scientific computing, also called Computational Science and Engineering (CSE),
is about applying numerical methods — as well as the algorithms and approaches of discrete
mathematics — to solve “real world” problems from some application field. Though different
researchers in scientific computing focus on different aspects, they share the interplay between
the domain expertise and modeling, mathematical analysis, and efficient computation.

I have read many descriptions of data science, and have not been satisfied by any of them. The
fashion now is to call oneself a data scientist and (if in a university) perhaps to start a master’s
program to train students to call themselves data scientists. There are books and web sites
and conferences devoted to data science; SIAM even has a new journal on the Mathematics of
Data Science. But what is data science, really? Statisticians may claim that data science is
a modern rebranding of statistics. Computer scientists may reply that it is all about machine
learning1 and scalable algorithms for large data sets. Experts from various scientific fields
might claim the name of data science for work that combines statistics, novel algorithms, and

1The statisticians could retort that machine learning is itself a modern rebranding of statistics, with some
justification.

1



Bindel, Spring 2025 Numerics for Data Science

new sources of large scale data like modern telescopes or DNA sequencers. And from my
biased perspective, data science sounds a lot like scientific computing!

Though I am uncertain how data science should be defined, I am certain that a foundation of
numerical methods should be involved. Moreover, I am certain that advances in data science,
broadly construed, will drive research in numerical method design in new and interesting
directions. In this course, we will explore some of the fundamental numerical methods for
optimization, numerical linear algebra, and function approximation, and see the role they play
in different styles of data analysis problems that are currently in fashion. In particular, we
will spend roughly two weeks each talking about

• Linear algebra and optimization concepts for ML.

• Latent factor models, factorizations, and analysis of matrix data.

• Low-dimensional structure in function approximation.

• Function approximation and kernel methods.

• Numerical methods for graph data analysis.

• Methods for learning models of dynamics.

You will not strictly need to have a prior numerical analysis course for this course, though it
will help (the same is true of prior ML coursework). But you should have a good grounding
in calculus and linear algebra, as well as some “mathematical maturity”. I have posted some
to remind you of some things you may have forgotten, and perhaps to fill in some things you
may not have seen. In addition, the readings section of the home page consists of a number
of basic (and not-so-basic) texts to which you can refer. Along with course notes, we will be
using chapters from some of these books (and sometimes research papers) as required reading.
Please do ask questions as we go, and if you see anything that you think should be corrected
or clarified, send me an email (or you can suggest a change on the course GitHub repository.

What does a matrix mean?

Linear algebra objects and matrix representations

I like to think about four fundamental objects in linear algebra involving maps on or between
abstract vector spaces 𝒱 and 𝒰:

1. A linear map 𝒜 ∶ 𝒱 → 𝒰 satisfies 𝒜(𝑣 + 𝑤) = 𝒜𝑣 + 𝒜𝑤 and 𝒜(𝛼𝑣) = 𝛼𝒜𝑣 for any
vectors 𝑣, 𝑤 ∈ 𝒱 and scalar 𝛼.

2. An operator 𝒜 ∶ 𝒱 → 𝒱 represents a mapping of a space onto itself.

2

https://www.cs.cornell.edu/courses/cs6241/2021sp/background.pdf


Bindel, Spring 2025 Numerics for Data Science

3. A bilinear form 𝑎 ∶ 𝒱 × 𝒰 → ℝ is linear in both the first and the second argument. If 𝒱
and 𝒰 are vector fields over ℂ, it is natural to instead consider sesquilinear forms, which
are linear in the first argument and in the conjugate of the second argument.

4. A quadratic form 𝜙 ∶ 𝒱 → ℝ is 𝜙(𝑣) = 𝑎(𝑣, 𝑣) where 𝑎 ∶ 𝒱 × 𝒱 → ℝ is a bilinear form
(real case) or sesquilinear form (complex case).

All four of these objects appear in various applications in data analysis. Linear maps between
different spaces are a basic building block for regression and function approximation; operators
are used to describe linear time invariant systems, such as Markov chains; bilinear forms model
the similarity between pairs of objects represented by vectors 𝑣 and 𝑢; and quadratic forms
are used to measure a variety of quantities of interest in network analysis, such as cut sizes
and edge densities.

The abstract objects of linear algebra can be realized concretely as matrices with a choice of
bases. One way of thinking of a basis is as an invertible map from a concrete vector space
(like ℝ𝑛) to an abstract vector space (like 𝒱). Taking this perspective, we write a basis for 𝒱
as the “quasimatrix”

𝑉 = [𝑣1 … 𝑣𝑛]
where each column is a vector in 𝒱, allowing us to write an expansion of a general vector 𝑣 ∈ 𝒱
compactly as

𝑣 =
𝑛

∑
𝑗=1

𝑣𝑗𝑥𝑗 = 𝑉 𝑥.

We can similarly write a basis for 𝒰 as the quasimatrix

𝑈 = [𝑢1 … 𝑢𝑚] .

With this notation in place, we have the following matrix representations

1. We represent a linear map 𝒜 ∶ 𝒱 → 𝒰 by the matrix 𝐴 = 𝑈−1𝒜𝑉 . Then the abstract
operation 𝑢 = 𝒜𝑣 is equivalent to the concrete matrix-vector product 𝑦 = 𝐴𝑥, where
𝑢 = 𝑈𝑦 and 𝑣 = 𝑉 𝑥.

2. We represent a bilinear form 𝑎 ∶ 𝒱 × 𝒰 → ℝ as 𝑎(𝑉 𝑥, 𝑈𝑦) = 𝑦𝑇 𝐴𝑥.

3. We represent an operator 𝒜 by 𝐴 = 𝑉 −1𝒜𝑉 — just as with a linear map between two
spaces, but restricted to a single choice of basis.

4. We represent a quadratic form 𝜙 ∶ 𝒱 → ℝ as 𝜙(𝑉 𝑥) = 𝑥𝑇 𝐴𝑥 for some symmetric matrix
𝐴.

3



Bindel, Spring 2025 Numerics for Data Science

Canonical forms and decompositions

Given a good choice of basis, we can find matrix representations with very simple forms,
sometimes called canonical forms. For general choices of matrices, the canonical forms are

• For a linear map, we have the canonical form

𝐴 = 𝑈−1𝒜𝑉 = [𝐼𝑘 0
0 0]

where 𝑘 is the rank of the matrix and the zero blocks are sized so the dimensions make
sense.

• For an operator, we have the Jordan canonical form,

𝐽 = 𝑉 −1𝒜𝑉 = ⎡⎢
⎣

𝐽𝜆1
𝐽𝜆2

⋱ 𝐽𝜆𝑟

⎤⎥
⎦

where each 𝐽𝜆 is a Jordan block with 𝜆 down the main diagonal and 1 on the first
superdiagonal.

• For a quadratic form, we have the canonical form

𝑎(𝑉 𝑥) =
𝑘+

∑
𝑖=1

𝑥2
𝑖 −

𝑘++𝑘−

∑
𝑖=𝑘++1

𝑥2
𝑖 = 𝑥𝑇 𝐴𝑥, 𝐴 = ⎡⎢

⎣

𝐼𝑘+
−𝐼𝑘−

0𝑘0

⎤⎥
⎦

.

The integer triple (𝑘+, 𝑘0, 𝑘−) is sometimes called the inertia of the quadratic form (or
Sylvester’s inertia).

As beautiful as these canonical forms are, they are terrible for computation. In general, they
need not even be continuous! However, if 𝑉 and 𝑈 have inner products, it makes sense to
restrict our attention to orthonormal bases. This restriction gives canonical forms that we
tend to prefer in practice:

• For a linear map, we have the canonical form

𝑈−1𝒜𝑉 = [Σ𝑘 0
0 0]

where 𝑘 is the rank of the matrix and the zero blocks are sized so the dimensions make
sense. The matrix Σ𝑘 is a diagonal matrix of singular values

𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑘 > 0,

and the bases 𝑈 and 𝑉 consist of the singular vectors.

4



Bindel, Spring 2025 Numerics for Data Science

• For an operator, we have the Schur canonical form,

𝑉 −1𝒜𝑉 = 𝑇

where 𝑇 is an upper triangular matrix (in the complex case) or a quasi-upper trian-
gular matrix that may have 2-by-2 blocks (in the case of a real matrix with complex
eigenvalues). In this case, the basis vectors span nested invariant subspaces of 𝒜.

• For a quadratic form, we have the canonical form

𝑎(𝑉 𝑥) =
𝑛

∑
𝑖=1

𝜆𝑖𝑥2
𝑖 = 𝑥𝑇 Λ𝑥,

where Λ is a diagonal matrix with 𝜆1, … , 𝜆𝑛 on the diagonal.

If we compute canonical forms for matrices (rather than for abstract operators), we have some
of the standard matrix decompositions that appear in numerical linear algebra:

• The Singular Value Decomposition (SVD):

𝐴 = 𝑈Σ𝑉 ∗

• The Jordan decomposition (square 𝐴):

𝐴 = 𝑉 𝐽𝑉 −1

• The Schur decomposition (square 𝐴):

𝐴 = 𝑉 𝑇 𝑉 ∗

• The symmetric eigendecomposition (symmetric 𝐴)

𝐴 = 𝑉 Λ𝑉 ∗

When 𝐴 is symmetric, the latter three decompositions are the same. When 𝐴 is in addi-
tion positive semi-definite, all four decompositions coincide. In general, though, the “right”
canonical decomposition depends on the type of linear algebraic object we are working with.

5



Bindel, Spring 2025 Numerics for Data Science

Optimization

Much of this class2 will involve different types of optimization problems:

minimize 𝜙(𝑥) s.t. 𝑥 ∈ Ω.

Here 𝜙 ∶ ℝ𝑛 → ℝ is the objective function and Ω is the constraint set, usually defined in terms
of a collection of constraint equations and inequalities:

Ω = {𝑥 ∈ ℝ𝑛 ∶ 𝑐𝑖(𝑥) = 0, 𝑖 ∈ ℰ and 𝑐𝑖(𝑥) ≤ 0, 𝑖 ∈ ℐ}.

A point in Ω is called feasible; points outside Ω are infeasible. In many cases, we will be able
to solve unconstrained problems where Ω is the entire domain of the function (in this case, all
of ℝ𝑛), so that every point is feasible.

The objective �(x) = x2sin (2x) on Ω = [−5, 5] has four local minima (black), along with four
maxima (white) and one critical point which is neither (gray). Most optimizers will only
find one of the local minima, unless they are provided with a good initial guess at the global
optimum.

Even simple optimization problems need not have a solution. For example, a function might
not be bounded from below (e.g. the identity function 𝑥 ↦ 𝑥 on Ω = ℝ), or there might
be an asymptotic lower bound that can never be achieved (e.g. the function 𝑥 ↦ 1/𝑥 on
Ω = {𝑥 ∈ ℝ ∶ 𝑥 > 0}). If 𝜙 is continuous and Ω is closed and bounded (i.e. a compact subset of
ℝ𝑛), then at least there is some 𝑥∗ ∈ Ω that solves the global optimization problem problem:
that is, 𝜙(𝑥∗) ≤ 𝜙(𝑥) for all other 𝑥 ∈ Ω. But just because a solution exists does not mean it
is easy to compute! If all we know is that 𝜙 is continuous and Ω is compact, any algorithm
that provably converges to the global minimizer must eventually sample densely in Ω3. This
statement of gloom is usually too pessimistic, because we generally know more properties than
simple continuity of 𝜙. Nonetheless, in many cases, it may be too expensive to solve the global
optimization problem, or at least to prove that we have solved the problem. In these cases, the
best we know how to do in practices is to find a good local minimizer, that is, a point 𝑥∗ ∈ Ω
such that 𝜙(𝑥∗) ≤ 𝜙(𝑥) for all 𝑥 ∈ Ω close enough to 𝑥∗. If the inequality is strict, we call 𝑥∗
a strong local minimizer.

The picture is rosier when we want to solve a convex problem; that is,

1. The set Ω is convex: ∀𝑥, 𝑦 ∈ Ω, we have 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ Ω for 0 < 𝛼 < 1.

2. The function 𝜙 is convex on Ω: for any 𝑥, 𝑦 ∈ Ω and 0 < 𝛼 < 1,

𝜙 (𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝜙(𝑥) + (1 − 𝛼)𝜙(𝑦).

If the inequality is strict, we say 𝜙 is strongly convex.
2There are also some topics in the class that do not fit naturally into an optimization framework, and we will

deal with them as they come.
3See Global optimization by Törn and Žilinskas.

6



Bindel, Spring 2025 Numerics for Data Science

For a convex problem, every local minimizer is also a global minimizer, and the local minimizers
(if there is more than one) form a convex set. If the function 𝜙 is strongly convex, then there is
only one minimizer for the problem. Moreover, we have simple algorithms that we can prove
converge to the solution of a strongly convex problem, though we might still decide we are
unhappy about the cost of these methods for large problems.

Whether or not they are convex, many of the optimization problems that arise in machine
learning and data science have special structure, and we can take advantage of this structure
when we develop algorithms. For example:

• Among the simplest and most widely used optimization problems are linear programs,
where

𝜙(𝑥) = 𝑐𝑇 𝑥
subject to constraints 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0. Among their many other uses, linear programs
are a building block for sparse recovery methods in which we seek to represent a signal
vector as a linear combination of a small number of elements in some dictionary set. We
will not discuss sparse recovery in detail, but will touch on it when we discuss matrix
completion next week.

• Unconstrained problems with quadratic objective functions

𝜙(𝑥) = 1
2𝑥𝑇 𝐴𝑥 + 𝑏𝑇 𝑥 + 𝑐

are another simple and useful type. A common special case is the linear least squares
objective

𝜙(𝑥) = 1
2‖𝐴𝑥 − 𝑏‖2 = 1

2𝑥𝑇 𝐴𝑇 𝐴𝑥 − 𝑏𝑇 𝐴𝑥 + 1
2𝑏𝑇 𝑏.

We constantly optimize quadratic functions, both because they are useful on their own
and because optimization of quadratics is a standard building block for more complicated
problems. Optimizing a quadratic objective is the same as solving a linear system, and so
we can bring to bear many methods of modern linear algebra when solving this problem.
For example, a particularly popular approach is the conjugate gradient method.

• In many cases, the objective is a sum of simple terms:

𝜙(𝑥) =
𝑛

∑
𝑖=1

𝜙𝑖(𝑥).

An important case is the nonlinear least squares problem 𝜙(𝑥) = ‖𝑓(𝑥)‖2, which we will
discuss later this week. In modern machine learning, problems of this form are often
solved by various stochastic gradient methods.

7



Bindel, Spring 2025 Numerics for Data Science

• Most spectral methods in data science can be phrased in terms of the quadratically
constrained quadratic program

𝜙(𝑥) = 1
2𝑥𝑇 𝐴𝑥 + 𝑏𝑇 𝑥 + 𝑐, Ω = {𝑥 ∈ ℝ𝑛 ∶ 𝑥𝑇 𝑀𝑥 = 1}.

We will see such problems in matrix data analysis and also graph clustering and parti-
tioning methods. We can sometimes create methods for these problems that build on
the fact that we have good methods for solving eigenvalue problems.

• Some nonconvex objectives are bi-convex: 𝜙(𝑥1, 𝑥2) is a convex function of 𝑥1 for a fixed
𝑥2 and vice-versa, though not in 𝑥 as a whole. We will see these types of problems
repeatedly when we consider analysis of matrix data. We can sometimes create methods
for these problems based on the idea of block coordinate descent (also known as nonlinear
Gauss-Seidel or alternating iterations) that solve a sequence of convex subproblems in
each of the variables in turn.

• We also consider problems where 𝜙 (and possibly Ω) depend on an additional parameter
𝑠; for example, in an optimization problem coming from regression, we might have an ad-
ditional regularization parameter. In this case, we might consider continuation methods
that compute the curve of solutions.

8


	Introduction
	What does a matrix mean?
	Linear algebra objects and matrix representations
	Canonical forms and decompositions

	Optimization

