
Bindel, Spring 2021 Numerics for Data Science

2021-04-27

1 From semi-supervised to unsupervised
In the last lecture, we discussed the use of graphs for semi-supervised learning
tasks in which we are given labels on some nodes and want to find other
nodes. In this lecture, we turn to the unsupervised task of interpreting the
graph structure without the benefit of auxiliary data such as class labels.
Specifically, we consider the closely related tasks of graph partitioning, graph
clustering, graph embedding, and nonlinear manifold learning.

2 Graph bisection
We begin with a discussion of spectral graph partitioning. In the simplest
setting, we are given an unweighted graph, and we want to bisect the graph:
that is, we seek V = V+ ∪ V− disjoint with |V+| = |V−| so that there are
as few edges as possible connecting V+ to V−. There are several reasons we
might want to solve this problem:

1. For data analysis, we might want assign one of two class labels to every
graph node based on a similarity measure encoded through the graph.
However, we want to rule out the trivial solution where all nodes are
assigned to the same class. In the semi-supervised problem from last
class, we avoided this case with the help of labeled training examples.
In the unsupervised setting, we use class size constraints toward the
same end.

2. As we saw at the end of last lecture, in nested dissection ordering meth-
ods for solving linear systems, we want to recursively find small vertex
separators that partition the graph into roughly equal size pieces. Of
course, we have posed the problem in terms of finding good edge sepa-
rators for a graph, but some of the same ideas apply to both problems.
Also, we can construct vertex separators from edge separators by taking
an endpoint for each cut edge.

3. In static load balancing problems in parallel computing, we sometimes
want to distribute work (represented by nodes) to two processors in an

Bindel, Spring 2021 Numerics for Data Science

equitable way while ensuring that the interprocessor communication
(represented by cut edges) is as small as possible.

In each of these cases, we may ultimately want more than two pieces, or we
may want a more refined notion of the partition quality than the one we have
considered. But this is a good starting point nonetheless.

We can encode the basic problem in matrix terms via the graph Laplacian.
Let x = {±1}n be an indicator for a partitioning; then

eTx =
∑
i

xi = |V+| − |V−|,

xTLx =
∑

(i,j)∈E

(xi − xj)
2 = 4× (edges between V+ and V−),

and the basic graph bisection problem is

minimize1
4
xTLx over x ∈ {±1}n s.t. eTx = 0.

This is a classic NP-hard problem, but there is an easy relaxation where we
replace the constraint x ∈ {±1}n with x ∈ Rn such that ∥x∥22 = n. In this
case, we have a quadratically constrained quadratic program for x; and as
we have seen, such optimization problems can often be rewritten in terms
of eigenvalue problems. Of course, in addition to the quadratic constraint
∥x∥22 = n, we have the linear constraint eTx = 0. If we recognize that Le = 0,
we can see this as the standard optimization formulation for (one quarter)
the second-smallest eigenvalue1 of the graph Laplacian and associated eigen-
vector x of the graph Laplacian, with a particular normalization for x. This
vector is sometimes called the Fiedler vector.

The basic strategy for spectral graph partitioning then is:
1. Approximately compute the Fiedler vector x using the Lanczos itera-

tion, which requires only matrix-vector products with L.

2. Partition based on the signs of the elements of x.

3. (Optionally) refine with a local algorithm such as Kernighan-Lin.
Spectral methods are not the only way; methods like multi-level Kernighan-
Lin are also popular. But spectral partitioning is frequently used, it works
well, and it fits well with the overall narrative of these lectures!

1We will assume throughout this lecture that our graphs have a single connected com-
ponent, so that the zero eigenvalue of L has multiplicity 1.

Bindel, Spring 2021 Numerics for Data Science

3 Weights and normalization
So far, we have covered the case of spectral methods for bisection of un-
weighted graphs. But what if there are node and edge weights? That is, we
suppose that we want partition to minimize a weighted edge cut subject to
the constraint that a sum of node weights in both halves is zero. Let L be
a weighted Laplacian and c a vector of node costs; then we would like to
minimize xTLx subject to cTx = 0 and x ∈ {±1}n. As before, we relax the
integer constraint x ∈ {±1}n to x ∈ Rn and ∥x∥2 = n. This gives us the
problem

minimize xTLx s.t. xTx = n and x ∈ Rn with cTx = 0.

The space of vectors orthogonal to c is an n− 1-dimensional linear space; if
we choose an orthonormal basis V for this space, we can write x = V y and
obtain

minimize yT (V TLV)y s.t. yTy = n and y ∈ Rn−1.

The solution to this problem is (V TLV)y = λy where λ is the smallest
eigenvalue of V TLV . We can also solve this problem as

(ΠLΠ)x = λx.

where Π = V TV = I − ccT/∥c∥2 is the projection onto the space orthogonal
to c. In this case, λ is the second-smallest eigenvalue of ΠLΠ; as before,
the smallest eigenvalue is zero. The matrix ΠLΠ is not generally sparse,
but we can do fast matrix-vector products with it. We can compute this
second-smallest eigenvalue using the Lanczos algorithm, as before.

4 Normalized cuts
Another variant on the same idea uses the quadratic form

ρA,D(x) =
xTAx

xTDx

which, given a 0-1 indicator x for a set, tells us what fraction of the link
weight adjacent on the set is actually internal to the set. Closely related is
the quadratic form

ρL,D(x) =
xTLx

xTDx
= 1− ρA,D(x),

Bindel, Spring 2021 Numerics for Data Science

which tells us the ratio of a cut weight to the weight adjacent on the set.
The normalized cut for a set is the symmetrized function

C(x) = ρL,D(x) + ρL,D(e− x).

Let k = xTd/(eTd) be the fraction of all the weight in the graph that is
incident on x; then

C(x) =
xTLx

kwall
+

xTLx

(1− k)wall
=

1

k(1− k)

xTLx

wall
=

1

1− k

(
xTLx

xTDx

)
For a fixed target k, therefore, minimizing the cut measure C(x) is equivalent
to minimizing the generalized Rayleigh quotient ρL,D(x). For a fixed k, we
introduce

y = x+ b(e− x), b =
k

1− k

i.e. an indicator that takes on the value +1 on the desired set and −b on the
complement; the normalized cut is then also proportional to ρL,D(y), and the
constraint is dTy = 0. Hence, we have the optimization problem

minimize ρL,D(y) s.t. dTy = 0 and yi ∈ {1,−b};

and if we relax the final constraint, we find that we are minimizing ρL,D(y)
over the space dTy = eTDy = 0. This exactly characterizes the eigenpair
of Ly = λDy associated with the second-smallest eigenvalue; the eigenpair
associated with y = e and λ = 0 is explicitly removed from consideration by
the constraint.

5 Modularity maximization
As another example, we consider the problem of finding communities with
high “modularity,” defined to be the number of internal edges minus the
number that we would expect in a “configuration model” that reflects the
node degrees but otherwise assigns edges randomly. In matrix terms, if x is
a 0-1 indicator for a set, the modularity is xTBx where

B = A− ddT

2m

Bindel, Spring 2021 Numerics for Data Science

is the modularity matrix defined at the end of Tuesday’s notes. Note that
Be = 0, so that if y = 2x− e is a ±1 indicator for the same set, then

yTBy = 4xTBx− 4xTBe+ eTBe = 4xTBx.

Therefore, we consider maximizing the quadratic form yTBy over all ±1
indicators. Applying the usual trick, we relax the constraint that y ∈ {±1}n
to the quadratic constraint yTy = n for real-valued y to obtain the eigenvalue
problem

By = λy.

Unlike in the previous examples, we have no linear normalization constraints
here, and we are simply looking for the largest value and the corresponding
eigenvector. The “high modularity” sets indicated by the positive (or nega-
tive) elements of y are often used as starting points for community-detection
algorithms in social networks.

6 Mixing in random walks
So far, we have focused on spectral methods motivated by optimization,
but this is not the only way to arrive at these approach. Eigenvalues and
eigenvectors are also good for analyzing dynamics on networks, e.g. when
thinking about the convergence of random walks.

A (discrete time) Markov chain is a time-indexed set of random variables
X(t) in which the state at time t + 1 depends only on the state at time t.
For a finite state space [n] = {1, 2, . . . , n}, we can completely characterize
the Markov chain in terms of a transition matrix P with entries2.

pij = Prob{X(t+ 1) = i|X(t) = j}.

Let π(t) denote the probability mass function for X(t), represented as a
vector, i.e. πi(t) denotes the probability that X(t) = i. Then we have the
iteration equation

π(t+ 1) = Pπ(t) = P t+1π(0).

2We are taking the numerical linear algebra convention that probabilities distributions
represent column vectors, and P:,j denotes the probability mass function for X(t+1) given
X(t) = j. Statisticians often denote probability mass functions by rows, and reverse the
roles of i and j

Bindel, Spring 2021 Numerics for Data Science

Our usual way of thinking about Markov chains advances a distribution over
states from one time to the next. We can also think about the iteration
equation in terms of a random variable on the state space, represented by a
row vector fT . The expected value of the random variable at time t is

fTπ(t) = fTP tπ(0) =
(
fTP t

)
π(0).

That is, the same iteration that advances the distribution forward in time
serves to push random variables backward in time.

We often think of discrete time Markov chains over a finite state space in
terms or random walks on an associated graph. If A is a weighted adjacency
matrix for some directed graph, with aij denoting the edge weight of a node
from j to i, then we define a Markov chain with transition matrix

P = AD−1

where D is the diagonal matrix of node (out-)degrees. That is, we consider a
random walker who, at each step, chooses an outgoing edge to move on with
probability proportional to the weight of the edge. A number of properties
of the Markov chain are described in terms of the graph:

• We say i accesses j if there is a path from i to j through the graph.

• We say i and j communicate if i access j and vice-versa.

• We call the Markov chain irreducible if all nodes communicate.

• The period of node i is the GCD of the length of all closed paths
beginning and ending at i. If there are no such paths, we say that the
period of i is infinite. We note that if i and j communicate with each
other, then they must have the same period.

• The Markov chain is aperiodic if all nodes have period one.

Every Markov chain over a finite state space has a stationary distribution π∗

such that Pπ∗ = π∗ (this is a consequence of the Perron-Frobenius theorem).
The stationary distribution is unique if there is some state i that can access
any other state. If the Markov chain is irreducible, then the stationary prob-
ability is not only unique, but is nonzero for all states. An aperiodic Markov
chain will converge to some stationary distribution from any initial distribu-
tion. If a Markov chain is both irreducible and aperiodic, it is ergodic, and

Bindel, Spring 2021 Numerics for Data Science

from any initial distribution it will eventually converge to a unique stationary
distribution supported on all nodes.

A Markov chain is reversible if it has a stationary distribution for which
it satisfies detailed balance, i.e.

PDπ∗ = Dπ∗P T

where Dπ∗ is the diagonal matrix formed from the stationary distribution
vector. If the Markov chain satisfies detailed balance, it can be described as
a random walk on an undirected graph with weight matrix A = D

−1/2
π∗ PD

1/2
π∗ .

The structure of the irreducible components of a Markov chain are re-
flected in in the nonzero structure of the stationary vectors. There is a basis
of row eigenvectors that are indicators for maximal accessing sets, and a ba-
sis of stationary distributions that are supported on minimal accessible sets.
For example, suppose a Markov chain is reducible with two irreducible com-
ponents. If neither set can access the other, the transition matrix is block
diagonal:

P =

[
P11 0
0 P22

]
.

In this case, we can write row eigenvectors with eigenvalue 1 indicating the
two blocks (both maximal accessible sets, since they cannot be accessed by
any larger group), and column eigenvectors for stationary distributions on
the two blocks, i.e.[

e
0

]T [
P11 0
0 P22

]
=

[
e
0

]T [
0
e

]T [
P11 0
0 P22

]
=

[
0
e

]T
[
P11 0
0 P22

] [
π∗
1

0

]
=

[
π∗
1

0

] [
P11 0
0 P22

] [
0
π∗
2

]T
=

[
0
π∗
2

]
,

where e denotes the vector of all ones of a given size. Note that the eigen-
vectors are not uniquely determined: any row vector of the form

[
αeT βeT

]
is also a row vector of P in this case, and similiarly with the column eigen-
vectors.

If the second irreducible set can access the first irreducible set, the tran-
sition matrix is block upper triangular with a nonzero off-diaginal block:

P =

[
P11 0
0 P22

]
.

Bindel, Spring 2021 Numerics for Data Science

In this case, the eigenvalue at 1 has multiplicity 1. The row eigenvectors
with eigenvalue 1 indicates both blocks (the maximal accessing set, since
some nodes can be accessed by everything), but the stationary distribution
is only nonzero on the first block (the minimal accessible set), i.e.[

e
e

]T [
P11 P12

0 P22

]
=

[
e
e

]T [
P11 P12

0 P22

] [
π∗
1

0

]
=

[
π∗
1

0

]
.

Thus far, we have described properties of the Markov chain related to the
stationary state or states. For an aperiodic chain with a unique stationary
state, the rate of convergence to stationarity can be expressed in terms of
the second largest eigenvalue, i.e.

∥π∗ − π(t)∥ ≤ C|λ2|t

for some constant C. Sometimes, though, |λ2| is close to one, and this can
be very telling. In particular, we see a much richer structure if we consider
metastable or slowly mixing states associated with eigenvalues near one.

For example, Simon-Ando theory deals with almost-reducible Markov
chains, e.g.

P = P ref + E, P ref =

[
P11 0
0 P22

]
.

In this case, we have an almost invariant subspace spanned by the invariant
distributions for the irreducible components in the reference problem

P

[
πref
1 0
0 πref

2

]
≈

[
πref
1 0
0 πref

2

]
and [

e 0
0 e

]T
P ≈

[
e 0
0 e

]T
.

Hence, convergence of the Markov chain has two phases: a rapid mixing phase
determined by the eigenvalues of P ref

11 and P ref
22 , and a slow equilibration phase

in which we have
π(t) ≈

[
α1(t) π

ref
1

α2(t) π
ref
2

]
.

Put differently, after a few steps, we mostly forget anything about the initial
distribution other than whether we likely started in the first or the second
set.

Bindel, Spring 2021 Numerics for Data Science

In the case of a Markov chain with disjoint connected components, when
there is an eigenvalue at one with geometric multiplicity greater than one,
the eigenvectors at one are not uniquely determined. However, the invariant
subspaces (left and right) spanned by the eigenvectors are uniquely deter-
mined. In the weakly coupled cases, the eigenvectors associated with eigen-
values close to one generally are uniquely determined, but they are sensitive
to small changes in the chain, and they may individually be hard to compute
using standard iterations. However, for many applications, we don’t care
about the eigenvectors, but about the invariant subspace that they span. It
is this subspace that is useful in clustering, for example, and it is equally
useful whether we represent it in terms of the eigenvector basis or in terms
of another basis.

This perspective on mixing of Markov chains gives us another way of
thinking about graph clustering and partitioning via normalized cuts. The
eigenvalues problem that arises from normalized cuts is

Ax = λDx,

and pre-multiplication by D−1 gives

D−1Ax = P Tx = λx.

That is, computing the dominant eigenvectors for the normalized cuts prob-
lem can either be interpreted as approximately solving an optimization prob-
lem or as finding indicators for fast-mixing subchains in a Markov chain with
overall slow mixing.

7 Geometric embedding
While we started the lecture with graph bisection problems in which all we
looked at was a single eigenvector, we have now seen several different excuses
to try to extract information about a graph from a low dimensional invariant
subspaces of associated matrices:

• Our discussion of Markov chains suggests that we may want to look at
a dominant invariant subspace of P or P T where P is the transition
matrix for a Markov . We can think of this subspace as interesting
because of what it tells us about natural clusters from the dynamics
perspective (fast-mixing subchains within a slowly-mixing chain).

Bindel, Spring 2021 Numerics for Data Science

• We can also think of this subspace as interesting because it consists of
“smooth” functions that form a basis for good approximate solutions
to an optimization problem.

• Another way to think about things is through the lens of kernel approx-
imation. Recall from last lecture that we defined a kernel function asso-
ciated with the pseudoinverse of the Laplacian, and associated “Laplace
features” with that kernel.

• These Laplace features can also be seen in terms of a low-dimensional
embedding of the graph nodes in a Euclidean space in order to opti-
mally approximate the resistance distance. More generally, if we have
a squared distance matrix A between objects (i.e. aij = ∥xi − xj∥2),
then the centered distance matrix

B = −1

2
HAH, H = I − 1

n
eeT

is a positive semi-definite Gram matrix, and the r eigenvectors of B
associated with the largest eigenvalues give us a mapping of objects to
points in Rd that approximates the distance matrix as well as possible
in a least squares sense.

Finding an “optimal” geometric embedding frequently reduces to an eigen-
value problem, but we can also compute such coordinate systems via other
factorizations, such as pivoted QR or Cholesky factorization. This corre-
sponds to an embedding that may not be optimal, but is focused on the
relation between general data objects and a handful of reference examples.

Once we have a low-dimensional embedding that we think captures the
relevant geometry, we can apply geometric methods such as k-means to try
to find clusters.

	From semi-supervised to unsupervised
	Graph bisection
	Weights and normalization
	Normalized cuts
	Modularity maximization
	Mixing in random walks
	Geometric embedding

