
Bindel, Spring 2021 Numerics for Data Science

2021-04-13

1 The basic tasks
In the past two lectures, we have discussed various interpretations of kernels
and how they are used for interpolation and regression. In today’s lecture,
we focus on the numerical methods used to fit kernel-based models and to
use them for prediction and uncertainty estimation. More specifically, we
consider four problems:

• For a fixed kernel, how do we fit the parameters for a kernel-based
model? That is, how do we compute c such that

f̄(x) =
n∑

j=1

cjk(x, xj)

approximately satisfies f̂(xi) ≈ yi, where (xi, yi) are our observed data
points?

• Many kernels involve hyper-parameters, such as length scale and smooth-
ness parameters. How should we determine these hyper-parameters?

• How do we quickly evaluate the predicted values f̂(x) at new points x?

• How do we quickly evaluate measures that quantify uncertainty, such
as the predictive variance?

Because fitting model parameters and hyper-parameters is more costly than
evaluating the predicted mean field or predictive variance, we will focus most
of our attention on the fitting tasks. We will also focus primarily on the prob-
abilistic interpretation of kernels in terms of Gaussian processes. Because we
have in mind downstream tasks in which a user can adaptively obtain new
data (as opposed to fitting to a fixed data set), we will also discuss incre-
mental fitting.

2 Learning at small n
We initially consider the case where there are few enough data points that
it makes sense to use standard direct factorization methods to solve the

Bindel, Spring 2021 Numerics for Data Science

fitting problem. These standard factorizations require O(n3) time, but if we
use well-tuned libraries, the constants need not be large. Using a standard
laptop, we can work with data sets of size greater than n = 1000 as a matter
of routine. The direct factorization approach is also useful as a starting point
for scalable algorithms more appropriate to large n.

2.1 Cholesky and kernel-only fitting
The Cholesky factorization of a positive definite kernel matrix K is

K = RTR

where R is upper triangular. The fitting system in the case of a positive
definite kernel with no tail is

Kc = y,

and the standard solution algorithm is a Cholesky factorization of K followed
by two triangular solves

c = R−1(R−Ty).

The Cholesky factorization costs O(n3); the triangular solves each cost O(n2).
Hence, the cost is dominated by the cost of the Cholesky factorization.

For computation, it is useful to think of the decomposition in block terms[
K11 K12

KT
12 K22

]
=

[
RT

11 0
RT

12 RT
22

] [
R11 R12

0 R22

]
.

Rearranging block-by-block, we have

K11 = RT
11R11 RT

11R11 = K11

K12 = RT
11R12 R12 = R−T

11 K12

K22 = RT
12R12 +RT

22R22 RT
22R22 = K22 −RT

12R12

That is, we can think of the decomposition in terms of a decomposition of
the leading submatrix of K, a triangular solve to get an off-diagonal block,
and then decomposition of the trailing Schur complement

S22 = RT
22R22 = K22 −RT

12R12 = K22 −K21K
−1
11 K12.

Bindel, Spring 2021 Numerics for Data Science

The Schur decomposition has a meaning independent of the Cholesky fac-
torization, as we can see by solving the system[

RT
11 0

RT
12 R22

] [
R11 R12

0 R22

] [
X1

X2

]
=

[
0
I

]
.

Block forward substitution gives[
R11 R12

0 R22

] [
X1

X2

]
=

[
0

R−T
22

]
and block back substitution then yields[

X1

X2

]
=

[
−R−1

11 R12R
−1
22 R

−T
22

R−1
22 R

−T
22

]
=

[
−S−1

11 K12S
−1
22

S−1
22

]
.

That is, the inverse of the Schur complement is a submatrix of the inverse of
the original matrix K: S−1

22 =
[
K−1

]
22

. In the Gaussian process setting, if
K is the covariance matrix, then K−1 is the precision matrix, and S−1

22 is the
precision matrix of the posterior for the second block of variables conditioned
on observations of data points from the first block.

In introductory numerical methods courses, one typically first encounters
the (scalar1) right-looking version of the Cholesky algorithm:

1 % Overwrite K with the Cholesky factor R
2 for j = 1:n
3 K(j,j) = sqrt(K(j,j));
4 K(j,j+1:end) = K(j,j+1:end) / K(j,j);
5 K(j+1:end,j) = 0;
6 K(j+1:end,j+1:end) = K(j+1:end,j+1:end) - K(j,j+1:end)'*K(j,j+1:end);
7 end

At step j of the loop, we have computed the first j − 1 rows of R, and the
trailing submatrix contains the Schur complement. At the end of the step,
we perform a rank 1 update to get a new (smaller) Schur complement matrix.

An alternate organization, the left-looking version, defers the Schur com-
plement update until it is needed:

1The scalar version of the algorithm works one column at a time. Various blocked
versions of the factorization algorithm update in blocks of several columns at a time, with
a small (scalar) Cholesky factorization for the diagonal blocks. Block algorithms have the
same complexity as the corresponding scalar algorithms, but achieve better performance
on modern hardware because they make better use of the cache.

Bindel, Spring 2021 Numerics for Data Science

1 % Overwrite K with the Cholesky factor R
2 K(1,1) = sqrt(K(1,1));
3 K(2:end,1) = 0;
4 for j = 2:n
5 K(1:j-1,j) = K(1:j-1,1:j-1) \ K(1:j-1,j)
6 K(j,1:j-1) = 0;
7 K(j,j) = sqrt(K(j,j) - K(1:j-1,j)'*K(1:j-1,j));
8 end

Both organizations of Cholesky do the same operations, but in a different
order. Both require O(n3) time; the dominant cost per step for the right-
looking variant is the rank-1 update of the Schur complement, where the
dominant cost per step for the left-looking variant is the triangular solve.

The advantage of the left-looking factorization is that it can be applied
incrementally. That is, suppose that K11 corresponds to the kernel matrix
associated with an initial sample of data points, and we have computed
K11 = RT

11R11. Then to add a second set of data points, we can do a left-
looking block update

R12 = R−T
11 K12

RT
22R22 = K22 −RT

12R12

The cost of this update is O((n2
1+n

2
2)n2), which is significantly less than the

O((n1 + n2)
3) cost of recomputing the factorization from scratch in the case

that n2 ≪ n1.

2.2 Fitting with a tail
We now consider fitting in the presence of a tail term. Polynomial tails are
typically used with conditionally positive definite kernel functions, but they
can also be used with positive definite kernels — and indeed they usually
are used in some geostatistical applications. One can also incorporate non-
polynomial terms into the tail if they are useful to the model.

The fitting problem with a tail looks like

f̂(x) =
∑
i

cik(x, xi) +
∑
j

djpj(x)

where the coefficients d satisfy the discrete orthogonality condition∑
i

pj(xi)di = 0

Bindel, Spring 2021 Numerics for Data Science

for each basis function pj(x). This gives us the linear system[
K P
P T 0

] [
c
d

]
=

[
y
0

]
.

We can also see this linear system from the perspective of constrained op-
timization: we are minimizing a quadratic objective (associated with K)
subject to linear constraints (associated with P). Note that this formula-
tion is only well posed if P is full rank, a condition sometimes known as
unisolvency of the interpolation points.

One way to deal with the tail term is the “null space” approach; that
is, rather than adding equations that enforce the discrete orthogonality con-
straint, we find a coordinate system in which the discrete orthogonality con-
straint is automatic. Specifically, suppose we write the full QR decomposi-
tion of P as

P =
[
Q1 Q2

] [R1

0

]
.

Then the constraint P T c = 0 can be rewritten as c = Q2w, giving us

QT
2KQ2w = QT

2 y

where QT
2KQ2 is generally symmetric and positive definite even for a condi-

tionally positive definite kernel. Once we have computed w (and from there
c), we can compute d by the relation

R1d = QT
1 (y −Kc).

An alternate approach is to partition the data points into two groups,
the first of which is unisolvent and has the same size as the dimension of the
tail. Then we can write any c satisfying P T c = 0 in the form[

c1
c2

]
=

[
−W T

I

]
c2

where W = P2P
−1
1 . Substituting this into the constrained optimization of

cTKc gives the reduced problem

K̃22c2 = (K22 −WK12 −K21W
T +WK11W)c2 = y2,

Bindel, Spring 2021 Numerics for Data Science

from which we can recover the remaining coefficients by solving

c1 = −W T c2

P1d = y1 −K11c1 −K12c2.

This reduction is formally equivalent to Gaussian elimination and substitu-
tion on the system  0 P T

1 P T
2

P1 K11 K12

P2 K21 K22

 dc1
c2

 =

 0
y1
y2

 .
As with the left-looking factorization described in the previous section, we
can form W , K, K̃22, and the Cholesky factorization of K̃22 incrementally as
new data points are added.

2.3 Likelihoods and gradients
Recall from the last lecture that the log likelihood function for a (mean zero)
Gaussian process is

L = −1

2
yTK−1y − 1

2
log detK − n

2
log(2π).

Given a Cholesky factorization K = RTR, we can rewrite this as

L = −1

2
∥R−Ty∥2 − log detR− n

2
log(2π),

and note that
log detR =

∑
i

log rii.

The cost of evaluating the log likelihood is dominated by the cost of the
initial Cholesky factorization.

In order to optimize kernel hyper-parameters via maximum likelihood,
we would also like to compute the gradient (and maybe the Hessian) with
respect to the hyper-parameters. Recall from last time that we computed
the derivative

δL =
1

2
cT [δK]c− 1

2
tr(K−1δK)

Bindel, Spring 2021 Numerics for Data Science

where Kc = y. Unfortunately, I know of no tricks to exactly compute
tr(K−1δK) for arbitrary δK without in time less than O(n3) without ex-
ploiting additional structure beyond what we have discussed so far.

Simply computing gradients of the log likelihood is sufficient for gradient
descent or quasi-Newton methods such as BFGS. However, if the number of
hyper-parameters is not too great, we may also decide to compute second
derivatives and compute a true Newton iteration. Let θ be the vector of
hyper-parameters and use [f],j to denote the partial derivative of an expres-
sion f with respect to θj; then[
yTK−1y

]
,ij

=
[
−yTK−1K,iK

−1y
]
,j

= 2yTK−1K,iK
−1K,jK

−1y − yTK−1K,ijK
−1y

= 2cTK,iK
−1K,jc− cTK,ijc

[log detK],ij =
[
tr
(
K−1K,i

)]
,j

= tr
(
K−1K,ij −K−1K,iK

−1K,j

)
L,ij =

1

2
cTK,ijc− cTK,iK

−1K,jc−
1

2
tr
(
K−1K,ij −K−1K,iK

−1K,j

)
.

Barring tricks that take advantage of further structure in the kernel matrix
K or its derivatives, computing these second partials has the same O(n3)
complexity as computing the first derivatives.

2.4 Optimizing the nugget
An important special case is optimization with only a single hyper-parameter,
the noise variance term or “nugget” term2 That is, we seek to maximize

L(η) = −1

2
yT (K + ηI)−1y − 1

2
log det(K + ηI)− n

2
log(2π).

In this case, rather than doing a Cholesky factorization, we may choose to
compute an eigenvalue decomposition K = QΛQT in order to obtain

L(η) = −1

2
ŷT (Λ + ηI)−1ŷ − 1

2
log det(Λ + ηI)− n

2
log(2π)

2The term “nugget” comes from the use of Gaussian process regression in geostatistical
applications. When trying to use Gaussian processes to predict the location of precious
mineral deposits based on the mineral content in bore measurements, it is necessary to
account for the possibility that a measurement may accidentally happen on a mineral
nugget.

Bindel, Spring 2021 Numerics for Data Science

where ŷ = QTy. In this case, the stationary points satisfy a rational equation
in η:

n∑
j=1

(
ŷ2j

(λj + η)2
− 1

2(λj + η)

)
= 0.

We can run Newton on this equation in O(n) time per step.

3 Smooth kernels and low-rank structure
The cost of parameter fitting for a general kernel matrix is O(n3), and the
cost of hyper-parameter fitting by a gradient-based method applied to max-
imization of the log-likelihood involves an additional O(n3) cost per hyper-
parameter per step. However, for smooth kernels, the kernel matrix (without
a nugget term) may be effectively very low rank. This case is of enough
interest that we give it special treatment here. More specifically, we assume
a kernel matrix of the form

K̃ = K + ηI

where most of the eigenvalues of K are much less than η. In this case, we
can solve the fitting problem and the computation of the log-likelihood and
gradients in much less than O(n3) time.

3.1 Pivoted Cholesky and kernel approximation
We begin with an outer product factorization of the kernel matrix K with-
out a regularizing nugget. Specifically, we consider the pivoted Cholesky
factorization

ΠTKΠ = RTR

where the diagonal elements of R appear in descending order and the off-
diagonal elements in each row of R are dominated by the diagonal element.
The pivoted Cholesky factorization algorithm looks very much like the stan-
dard Cholesky algorithm, except before adding row j to the R factor, we
first swap rows and columns j and jmax of K, where jmax is the index of the
largest entry in the Schur complement matrix.

The approximation error associated with truncating the pivoted Cholesky
factorization is just the Schur complement matrix; that is (suppressing the

Bindel, Spring 2021 Numerics for Data Science

permutation momentarily),[
K11 K12

K21 K22

]
−

[
RT

11

RT
12

] [
R11 R12

]
=

[
0 0
0 K22 −RT

12R12

]
Typically, we would stop the factorization when all the diagonal elements in
the Schur complement are less than some tolerance. Because the Schur com-
plement is positive definite, the sum of the diagonal elements in the Schur
complement is the same as the nuclear norm of the Schur complement, so
controlling the size of the largest diagonal element also controls the approxi-
mation error in the nuclear norm (which dominates both the Frobenius norm
and the spectral norm).

Part of what makes pivoted Cholesky attractive is that we can run the
algorithm without ever forming K — we only need the rows of K associated
with the pivots selected up to the current step, plus a running computation
of the diagonal of the Schur complement. If we have formed j − 1 steps of
the pivoted Cholesky factorization, we can extend the factorization by:

• Searching the Schur complement diagonal d to find the pivot row jmax

and swapping points j and jmax and columns j and jmax of R (and d).

• Forming the top row of the current Schur complement using the formula

sjl = k(xj, xl)−
j−1∑
i=1

rijril

• Extending the factorization with sjj =
√
sjj and rjl = sjl/rjj for l > j.

• Updating the diagonal of the Schur complement via dnewll = dll − r2jl.

Running pivoted Cholesky in this way for r steps only requires O(nr) kernel
evaluations, O(nr) storage, and O(nr2) time.

3.2 The effects of truncation error
We now consider the solution of the linear system

(K + ηI)c = y

Bindel, Spring 2021 Numerics for Data Science

where ηI is the nugget term. Suppose we have a low-rank factorization
(computed by truncated pivoted Cholesky, for example) of the form K ≈
WW T . Substituting gives us the approximate system

(WW T + ηI)ĉ = y.

How close are ĉ and c? Let K = WW T +E, i.e. E is the part of K discarded
by truncating a decomposition of K. Then subtracting the approximate
linear systems gives

(K + ηI)(c− ĉ) = Eĉ,

and norm bounds yield

∥c− ĉ∥ ≤ ∥(K + ηI)−1E∥∥ĉ∥ ≤ ∥E∥
η

∥ĉ∥.

where we have throughout used the matrix two-norm. The matrix two-norm
is bounded by the nuclear norm; and if W comes from a pivoted Cholesky
factorization, we can compute the nuclear norm of E as the sum of the
diagonal elements in the truncated Schur complement term. Hence, if we use
pivoted Cholesky with the termination criterion

∥S∥∗ ≤ δη,

then we obtain the relative error bound
∥c− ĉ∥
∥ĉ∥

≤ δ

if all computations are done in exact arithmetic.

3.3 Solving with the kernel
To solve a system (WW T+ηI)c = y efficiently, let us introduce a new variable
z = W T c; putting together the definition of z with the equation for c gives
us [

ηI W
W T −I

] [
c
z

]
=

[
y
0

]
.

Of course, we can eliminate z to get back to the original equation; but what
happens if we instead eliminate c? Then we get the reduced system

(−I − η−1W TW)z = −η−1W Ty.

Bindel, Spring 2021 Numerics for Data Science

Multiplying through by −η gives

(W TW + ηI)z = W Ty,

Back substitution gives the formula

c =
1

η

(
y −W (W TW + ηI)−1W Ty

)
.

This is a special case of the famous Sherman-Morrison-Woodbury formula
for the inverse of a matrix (in this case σ2I) plus a low-rank modification.

While we can certainly work with the Sherman-Morrison-Woodbury for-
mula directly, we can do a little better if we recognize that the equations in
z alone are the regularized normal equations for the optimization

minimize 1

2
∥Wz − y∥2 + η

2
∥z∥2.

Furthermore, we have that

c = η−1(y −Wz);

that is, c is just the scaled residual of the least squares problem. In terms of
an economy QR decomposition[

W√
ηI

]
=

[
Q1

Q2

]
R

we have
c = η−1

(
y −Q1(Q

T
1 y)

)
.

This computational approach (using an economy QR decomposition) enjoys a
modest stability advantage compared to working directly with the Sherman-
Morrison-Woodbury formula.

3.4 Evaluating the kernel approximant
We have so far treated the pivoted Cholesky approach as a way to approxi-
mate the kernel matrix. Another interpretation is that we have computed a
semidefinite kernel function

k̂(x, y) = kxIK
−1
II kIx

Bindel, Spring 2021 Numerics for Data Science

where I refers to the r indices selected in the Cholesky factorization. These
two interpretations lead to the same linear system to approximate the coeffi-
cient vector c, but they suggest two different approximations to the function:

s(x) =
n∑

i=1

k(x, xi)ci or ŝ(x) =
n∑

i=1

k̂(x, xi)ci.

The two approximations agree for points x that are sufficiently close to the
training data, but they may differ when x is farther away. The former ap-
proximation is the one that may have motivated us initially, but it is worth
spending a moment on the second approximation.

Writing ŝ in matrix terms, we have
ŝ(x) = k̂xX(K̂XX + ηI)−1y

= kxIK
−1
IIKIX(KXIK

−1
IIKIX + ηI)−1y.

Equivalently, we can write
ŝ(x) = kxId

where (omitting some algebra) d is the solution to the regularized least
squares problem

minimize 1

2
∥KXI d̂− y∥2 + η

2
dTKIId.

If KII = RT
IIRII is the leading part of the pivoted Cholesky factorization, we

can rewrite this minimization as

minimize 1

2

∥∥∥∥[KXI√
ηRII

]
d−

[
y
0

]∥∥∥∥2

.

Alternately, we can think of the pivoted Cholesky factorization as inducing
a feature map associated with the approximate kernel k̂:

k̂(x, y) = ψ(x)Tψ(y), ψ(x) = R−T
II kIx.

Let W denote the matrix of feature vectors (i.e. row i is ψ(xi)T); in the
pivoted Cholesky factor, this is just RT

I,:. Then the approximation system
involves solving

minimize 1

2
∥Wz − y∥+ η

2
∥z∥2,

which is the same minimization we saw in the previous subsection; and we
can write the ŝ(x) function as

ŝ(x) = ψ(x)T z.

Bindel, Spring 2021 Numerics for Data Science

3.5 Predictive variance
Treating k as the covariance kernel of a Gaussian process, the predictive
variance at a test point x (conditioned on noisy data at points X) is

v(x) = k(x, x)− kxX(KXX + ηI)−1kXx.

As in the previous section, we can again think about using low rank approx-
imation in one of two ways: either we can use the low rank structure with
the original kernel for the linear solve (WW T + ηI)−1kXx; or we can think of
the low rank factorization (via pivoted Cholesky) as defining the new kernel
k̂, for which the predictive variance is

v̂(x) = kxI(KII + η−1KIXKXI)
−1kIx.

Using the Cholesky factorization RT
IIRII = KII , we can rewrite

(KII + η−1KIXKXI)
−1 = ηQ̃T

1 Q̃1

where Q̃1 comes from the economy QR decomposition[
KXI√
ηRII

]
=

[
Q̃1

Q̃2

]
R̃,

which we may have already formed in the process of computing the coeffi-
cients in ŝ(x) = kxId.

3.6 Likelihoods and gradients
Recall the log likelihood function is

L =
1

2
yT c− 1

2
log det K̃ − n

2
log(2π)

where K̃ = K + ηI is the regularized kernel matrix. The first and last terms
need no special treatment in the case when the kernel matrix has special
structure, so long as we are able to rapidly compute the coefficient vector c.
The only non-obvious computation is the log determinant.

Consider the regularized kernel matrix K̃ = WW T +ηI where W ∈ Rn×r,
and suppose we write a full SVD for W :

W = UΣV T =
[
U1 U2

] [Σ1

0

]
V T

Bindel, Spring 2021 Numerics for Data Science

Then
UT K̃U =

[
Σ2 + ηI 0

0 ηI2

]
Hence,

log det(K̃) = log det(UT K̃U) = log det(Σ2 + ηI) + (n− r) log(η).

If we use that Σ2 + ηI is the eigenvalue matrix for W TW + ηI = RTR, with
R computed by the economy QR we used for kernel solves, we have

log det(K) = 2
r∑

j=1

log(rjj)− (n− r) log η.

What of the derivative of the log likelihood? That is, we would like a fast
method to compute

δL =
1

2
cT (δK̃)c− 1

2
tr(K̃−1δK̃).

We can simplify the latter term by observing that

K̃−1 =
1

η
(I −Q1Q

T
1)

where [
W√
ηI

]
=

[
Q1

Q2

]
R;

substitution and using properties of traces gives us

tr(K̃−1δK̃) =
1

η

(
tr(δK̃)− tr(QT

1 δK̃Q1)
)
.

If we work with the original kernel, it is difficult to do better than this.
Now suppose we differentiate the log-likelihood for the approximate kernel

induced by the points I, i.e.

K̃XX = KXIK
−1
IIKIX + ηI.

Differentiating this expression gives us

δK̃ = (δK:,I)F
T + F (δK:,I)

T − F (δKII)F
T + (δη)I

Bindel, Spring 2021 Numerics for Data Science

where F = K:,IK
−1
II . Therefore

1

2
cT (δK)c = (δK:,Ic)

T (Fc)− 1

2
(Fc)T (δKII)(Fc) +

1

2
∥c∥2δη

1

2
tr(K̃−1δK̃) = ⟨F̃ , δK:,I⟩F − 1

2
⟨F̃ , F δKII⟩F + δη

(
n− ∥Q1∥2F

)
F̃ ≡ 1

η
(I −Q1Q

T
1)F

and so we can compute derivatives of the log likelihood in O(nr) space and
O(nr2) time in this approximation.

3.7 Beyond low rank
For a number of kernels, the kernel matrix is not all that low rank — the
singular values decay, but not so quickly that we would be happy with O(nr2)
time algorithms. However, in low-dimensional spaces, one may still have low-
rank submatrices, and there are fast factorization techniques based on these
rank-structured matrices as well. There are also a variety of iterative solvers
that take advantage of fast matrix-vector multiplies; for example, we can use
the method of conjugate gradients (CG) to solve linear systems using only
matrix-vector products with a kernel matrix. For these types of solvers, the
low rank approximations using pivoted Cholesky as described above still give
us a good preconditioner that can accelerate convergence.

	The basic tasks
	Learning at small n
	Cholesky and kernel-only fitting
	Fitting with a tail
	Likelihoods and gradients
	Optimizing the nugget

	Smooth kernels and low-rank structure
	Pivoted Cholesky and kernel approximation
	The effects of truncation error
	Solving with the kernel
	Evaluating the kernel approximant
	Predictive variance
	Likelihoods and gradients
	Beyond low rank

