Paper link dump
This is an (incomplete) list of papers in my bookmark file as of Feb 23. Some are not particularly numerical, but many are. You are not expected to be able to immediately understand all of these, and you are not restricted to this list!
NA
Bayesian computation survey [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
On randomized trace estimates (Cortinovis and Kressner) [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Bayesian Probabilistic Numerical Methods [[paper]{.smallcaps}]{.tag tag-name=”paper”}
Multivariate Rational Approximation [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Exact GPs on a Million Data Points [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Three-precision GMRES [[paper]{.smallcaps}]{.tag tag-name=”paper”}
Sparse data-driven quadrature rules [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Lower-precision arith in SPD systems and LS problems [[paper]{.smallcaps}]{.tag tag-name=”paper”}
Control and RL
Deep Bayesian quadrature policy opt [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Trust region policy opt [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Robust regression for safe exploration in control [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Logistic Q-learning [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Provable multi-obj RL with gen models [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Nearly Minimax Optimal Reinforcement Learning for Linear Mixture MDPs
SciML
ML and Computational Mathematics [[paper]{.smallcaps}]{.tag tag-name=”paper”}
Generalized energy based models [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Centering data improves DMD [[paper]{.smallcaps}]{.tag tag-name=”paper”}
Physics-guided AI to accelerate sci discovery
ML: Mathematical Theory and Scientific Applications [[paper]{.smallcaps}]{.tag tag-name=”paper”}
Physics meets ML
ML in science
Masked graph modeling for molecule generation [[paper]{.smallcaps}]{.tag tag-name=”paper”}
Data-driven stabilization of periodic orbits [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
ML for phys sci
Physics-preserving ROM via constrained opt [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
IPAM workshop on ML for Physics
The frontier of simulation-based inference [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
On Empirical System Gramians [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Learning to Simulate Complex Physics with Graph Networks [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
PySINDy paper [[paper]{.smallcaps}]{.tag tag-name=”paper”}
Survey of Deep Learning for Scientific Discovery [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Hybrid FEM-NN models
Deep Ritz Method for High-D
Global opt, BO, sampling, etc
Matern GPs on manifolds [[paper]{.smallcaps}]{.tag tag-name=”paper”}
Student t processes as alternatives to GPs [[paper]{.smallcaps}]{.tag tag-name=”paper”}
Finding Global Minima via Kernel Approximations [[paper]{.smallcaps}]{.tag tag-name=”paper”}
MOTS: Minimax Optimal Thompson Sampling [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
Tutorial on Thompson sampling [[arxiv]{.smallcaps}]{.tag tag-name=”arxiv”}
- Tutorial on Thompson sampling (notebook)