
CS 6210: Homework 4
Instructor: Anil Damle
Due: November 6, 2024

Policies

You may discuss the homework problems freely with other students, but please refrain from looking
at their code or writeups (or sharing your own). Ultimately, you must implement your own code
and write up your own solution to be turned in. Your solution, including plots and requested
output from your code should be typeset and submitted via the Gradescope as a pdf file. Addition-
ally, please submit any code written for the assignment. This can be done by either including it
in your solution as an appendix, or uploading it as a zip file to the separate Gradescope assignment.

Question 1:

We are going to consider some details about how Krylov methods behave in specific situations.

(a) Given a symmetric positive definite matrix A and vector b, prove that if the Lanczos process
breaks down at some point (i.e. βk = 0 using the notation from class and Trefethen and Bau)
then the subspace Kk(A, b) contains a solution to the linear system Ax = b. In principle we
might be worried that if βk = 0 things have gone horribly wrong since we cannot construct
the next vector in our orthonormal basis. However, this result shows that in this context
everything has actually gone remarkably well.

(b) Still assuming that A is symmetric positive definite, consider using CG to solve the linear
system Ax = b and let y satisfy Tky = ‖b‖e1 (i.e., y is the solution to the CG subproblem
that defines our iterate in Kk(A, b)). Prove that the CG iterate x(k) = Vky satisfies

‖b−Ax(k)‖2 = βk(eTk y).

In addition, prove that b−Ax(k) ⊥ Kk(A, b) (i.e., that the residual is orthogonal to the current
Krylov subspace).
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Question 2:

Here, we will consider the applicability of Krylov methods to solving a set of closely related linear
systems. Specifically, we are given a real symmetric n × n matrix A and a set of M real numbers
{σi}Mi=1 (you may assume none of the σi are eigenvalues of A), and we want to solve the set of M
linear systems

(A− σiI)xi = b

for {xi}Mi=1. You may assume we do not have any reason to use an initial guess besides ~0 for all of
the given linear systems.

Devise a Krylov subspace based iterative method to “simultaneously” solve this collection of linear
systems in the sense that you construct M sequences of iterates each with the property that

x
(k)
i → (A− σi)−1 b as k →∞. In addition, your algorithm must satisfy the following properties:

• Use no more than one matrix vector product with A at each iteration. A single iteration

constitutes computing x
(k)
i for i = 1, . . . ,M.

• Converge (in exact arithmetic) for any σi that is not an eigenvalue of A and converge in at
most ` iterations for every i if A has ` distinct eigenvalues.

• Have a storage cost that is näıvely O(Mnk) and computational complexity per iteration
that is näıvely Tmult(A) + O(Mnk) + O(Mk3), but can be improved to O(Mn) + O(Mk)
and Tmult(A) + O(Mn) respectively. You do not have to work out all the details on the
improvement, but you do have to make a convincing argument that such an improvement is
possible.

Given this problem and set of requirements address the following:

(a) State your algorithm for addressing the above problem and prove why it satisfies the desired
criteria. Be sure to both clearly articulate your final algorithm and provide the desired proofs.

(b) Let’s say we are given a set of non-singular real symmetric preconditioners M−1
i ≈ (A− σi)−1

and their Cholesky factorizations M−1
i = LiL

T
i . Do you think that these preconditioners can

be incorporated into your algorithm without adversely impacting its computational benefits
(i.e., could you devise an algorithm that is faster than solving theM problems independently)?
Why or why not?
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