
CS 6210: Homework 3
Instructor: Anil Damle
Due: October 9, 2024

Policies

You may discuss the homework problems freely with other students, but please refrain from looking
at their code or writeups (or sharing your own). Ultimately, you must implement your own code
and write up your own solution to be turned in. Your solution, including plots and requested
output from your code must be typeset and submitted via the Gradescope as a pdf file. Addition-
ally, please submit any code written for the assignment. This can be done by either including it
in your solution as an appendix, or uploading it as a zip file to the separate Gradescope assignment.

Question 1:

Let us consider a symmetric, but possibly indefinite, matrix A ∈ Rn×n. While we cannot appeal
to a Cholesky decomposition when A is indefinite, it may seem natural to ask if we can still get
a “symmetric” factorization. It turns out that we can. In particular, we can seek a factorization
of the form A = LDLT where L is unit lower triangular and D is diagonal. We can motivate the
existence of such a factorization via the observation that if a11 ̸= 0 then we have the identity

A =

[
a11 vT

v A2

]
=

[
1
v
a11

I

][
a11

A2 − vvT

a11

][
1 vT

a11
I

]
,

where v = A(2 : n, 1) and A2 = A(2 : n, 2 : n). We could then recurse on A2 − vvT

a11
to get an LDLT

factorization of A. More concretely, given A2 − vvT

a11
= LDLT we have that

A =

[
1
v
a11

L

] [
a11

D

] [
1
v
a11

L

]T
.

However, as with LU factorization, directly following this path may be treacherous, e.g., if |a11|
is small. So, we might want to introduce pivoting. However, to retain symmetry we must use
symmetric pivoting and that only allows us to consider pivots on the diagonal. Specifically, at the
first step we would choose a permutation P1 such that the largest magnitude entry on the diagonal
of P1AP

T
1 is in the (1, 1) location. We would then compute P2 to move the largest magnitude

diagonal entry of A2 − vvT

a11
to the (1, 1) location and so on (analogously to LU).

Unfortunately, this scheme is not sufficient to stabilize LDLT factorization. In general we must
allow D to be block diagonal with 1× 1 and 2× 2 blocks to accomplish that goal. A quick way to
see this is that [

0 1
1 0

]
has no LDLT factorization with diagonal D. Similar to LU, the issues persist even if the diagonal
is not exactly zero but small. The goal of this problem is (mostly) to exercise your understanding
of the structure of triangular factorizations, so we will ignore this issue.1

1There are classes of matrices where it is fine to only consider diagonal D, so this is not completely unreasonable.

1

Write code that computes an LDLT factorization with symmetric pivoting given a symmetric
A ∈ Rn×n. Then use your code to address the following:

(a) Provide pseudo code for your implementation.

(b) What is the asymptotic computational complexity of this factorization? Demonstrate that
your code achieves the expected complexity.2

(c) Consider computing the LDLT factorization of the so-called Hilbert matrix of size n (defined
as Hij = 1/(i+ j − 1) for i, j = 1, . . . , n). Report L,D, and P to at least 4 significant digits
for the 4× 4 Hilbert matrix.

(d) For the Hilbert matrix, what do you observe about ∥LDLT − PHP T ∥2/∥H∥2 for moderate
n? What about the accuracy of a solution to Hx = b as quantified by the relative residual?
Explain your observations.

(e) Since the Hilbert matrix H is symmetric positive definite (this is a fun proof to try if you are
so inclined), presumably it would be natural to use a Cholesky decomposition rather than an
LU factorization. Repeat the previous part using a built-in Cholesky decomposition routine
(or implement it yourself if you like). What do you observe?

Question 2:

Assume that we are using a stationary iterative method to solve Ax = b with the splitting
A = M − N and initial guess x(0), and that x(1), . . . , x(k) have been computed using the itera-
tion Mx(j+1) = Nx(j) + b. Normally we would consider x(k) as our current approximation of the
solution x = A−1b. However, maybe there is some process that allows us to accelerate the conver-
gence of our method and draw an interesting connection to Krylov subspace methods.

Let’s consider one approach to accomplishing this goal. Specifically, we would like to construct

coefficients {v(k)j }kj=1 for each iteration k such that

y(k) =

k∑
j=0

v
(k)
j x(j)

is, hopefully, a better approximation of our true solution x than x(k). Define G = M−1N and

pk(z) =

k∑
j=0

v
(k)
j zj .

(a) Assuming x(0) = 0, is y(k) consistently part of a Krylov subspace? If so, which Krylov
subspace? (By consistently, I mean can you define a matrix H and vector w that do not
depend on k such that y(k) ∈ Kk(H,w).)

(b) Now, let us further assume that pk(1) = 1. Prove that

y(k) − x = pk (G) e(0)

2If you need test matrices that will avoid the aforementioned issues you can choose A to be strictly diagonally
dominant with positive diagonal entries, i.e., aii >

∑
j ̸= i|aij |.

2

(c) Prove that if B is similar to a Hermitian matrix then

ρ(pk(B)) = max
λi∈λ(B)

|pk(λi)|

where ρ(pk(B)) is the spectral radius of pk(B).

We now assume that the iteration matrix G is similar to a Hermitian matrix and has real eigenvalues
λ1 ≥ . . . ≥ λn. Recall that for convergence (from any initial guess) we require that

−1 < λn ≤ λ1 < 1.

Moreover, let α and β be such that

−1 < α ≤ λn ≤ · · · ≤ λ1 ≤ β < 1.

Since we may write
max

λi∈λ(B)
|pk(λi)| ≤ max

α≤λ≤β
|pk(λ)|,

it seems reasonable to pick pk to be small on the interval [α, β]. The ideal choice, given the constraint
on pk(1), is a scaled and shifted version of the kth Chebyshev polynomial. These polynomials may be
defined by the recursion cj(z) = 2zcj−1(z)− cj−2(z) where c0(z) = 1 and c1(z) = z. Alternatively,
we may write cj(z) = cos (jθ) where θ = arccos (z). Specifically, we may choose the polynomial

pk(z) =
ck

(
−1 + 2 z−α

β−α

)
ck(µ)

,

where µ = 1 + 2 1−β
β−α . You can verify that pk(1) = 1. Notably, ck(z) has the property that it is

bounded between −1 and 1 in the interval [−1, 1], but then grows rapidly outside of this interval.
So, in the formula above, ck(µ) becomes large as k → ∞. With the chosen scaling we ensure that
p(z) is small in the interval [α, β] while satisfying p(1) = 1.

(d) Given the above choice for pk(z) prove that there exists a constant C such that

∥y(k) − x∥2 ≤ C

(
1

ck(µ)

)
∥x− x(0)∥2,

where C may depend on the matrix G.

(e) Let α = −0.9 and β = 0.9. Plot ck(µ), on a logarithmic scale, for k = 0, 1, . . . , 100.

We will now consider using this acceleration method in conjunction with the Jacobi iteration. For
the remainder of this problem assume that A is a real symmetric matrix that is strictly diagonally
dominant and has positive diagonal entries.

(f) Under the aforementioned assumptions, prove that the iteration matrix associated with A is
similar to a Hermitian matrix.

(g) Implement the Jacobi method both with and without Chebyshev acceleration. You can
find pseudo-code in Golub and Van Loan 4th edition, section 11.2.8 (3rd edition, section
10.1.5) that leverages the three-term recurrence for Chebyshev polynomials for an efficient
implementation.

3

Build some non-singular test problems via matrices A, and vectors x(0) and b where the
eigenvalues of G approach ±1. You may use a built in routine to compute eigenvalues and
set the eigenvalue bounds as α = (−1 + λn)/2 and β = (1 + λ1)/2. Use your algorithm both
with and without the acceleration to solve Ax = b. You may stop your algorithm when the 2
norm of the relative residual is less than 10−6 or you have run 1000 iterations. Provide error
plots, on a logarithmic scale, of the 2 norm of the residual vs iteration both with and without
the acceleration. Comment on your observations.

Question 3 (ungraded, but interesting):

In class we saw a backwards stability style result for pivoted LU factorization that incorporated the
growth factor ρ. You may have noticed that we did not see any forward error results, i.e., we never
said anything about L̃− L or Ũ − U. In fact, the forward error can be quite large. However, often
what we ultimately care about is the solution to Ax = b. Devise a backwards error bound for solving
Ax = b with non-singular A using LU with partial pivoting followed by a sequence of triangular
solves.3 Your bound should explicitly incorporate the growth factor ρ. For this problem you may
assume that in exact arithmetic there are no ties in the pivoting procedure and µ is sufficiently
small such that the computed permutation matches the exact one.

One reason this problem is ungraded is that it has a very subtle point burried within it. While
the goal of this question is for you to see how backwards error results can be “chained” together
to get a result for the solution to the linear system, it requires bounds on ∥L̃∥ and ∥Ũ∥/∥A∥.

In class we saw that when using partial pivoting we can ensure ∥L∥ = O(1) because all of the
entries have magnitude bounded by 1. For L̃ we can make a similar argument, though formally
the easiest path is to ensure all the entires have magnitude less than 1 + µ (which does not really
change anything).

Unfortunately, bounding ∥Ũ∥/∥A∥ is more complex. In particular we (like many, but not all,
books) defined the growth factor in terms of the exact U. Therefore, it is slightly delicate to use it
directly for bounding ∥Ũ∥/∥A∥. For the purposes of this problem it suffices to derive a bound in
terms of both the “exact” growth factor ρ and a computed growth factor ρ̃ (defined as the growth
factor realized by Ũ).

This is actually a rather annoying sticking point in the analysis of these algorithms, and I am
certainly happy to discuss it further. For example, to quote Higham (Accuracy and Stability of
Numerical Algorithms; Section 9.3, page 165) when providing a theorem on backward error for
solving Ax = b via partially pivoted LU (Note, that in this book L̂ and Û are the computed LU
factors):

“We hasten to admit to using an illicit manoeuvre in the derivation of this theorem: we
have used bounds for L̂ and Û that strictly are valid only for the exact L and U .”

Higham goes on to comment (Accuracy and Stability of Numerical Algorithms; Section 9.14, page
189):

“The dilemma of whether to define the growth factor in terms of exact or computed
quantities is faced by all authors; most make one choice or the other, and go on to
derive, without comment, bounds that are strictly incorrect.”

So, there you have that.

3The computed solution x̃ solves a linear system (A+ δA)x̃ = b, what can you say about ∥δA∥/∥A∥?

4

