
CS 6210: Homework 1
Instructor: Anil Damle
Due: September 12, 2024

Policies

You may discuss the homework problems freely with other students, but please refrain from looking
at their code or writeups (or sharing your own). Ultimately, you must implement your own code
and write up your own solution to be turned in. Your solution, including plots and requested
output from your code must be typeset and submitted via the Gradescope as a pdf file. Addition-
ally, please submit any code written for the assignment. This can be done by either including it
in your solution as an appendix, or uploading it as a zip file to the separate Gradescope assignment.

Question 1:

This question is a bit of a theoretical warm up for the course. Matrix factorizations and norms will
play a key role in our analysis of algorithms.

(a) Prove that for any induced matrix norm ∥ · ∥ and A ∈ Rn×n

ρ(A) ≤ ∥A∥,

where ρ(A) is the spectral radius of A (i.e., the magnitude of the largest eigenvalue).

(b) A matrix A ∈ Cn×n is called normal if A∗A = AA∗. Prove that if A is normal, then the
matrix T in a Schur decomposition A = UTU∗ is diagonal.

The conjugate transpose is important—even for real A we must allow U and T to be complex
if we want T to be upper triangular. (See the challenge problem for a variation on this
factorization.) In other words, all normal matrices are diagonalizable via a unitary matrix.

(c) Prove that for any induced matrix norm ∥ · ∥ and appropriately sized matrices A and B

∥AB∥ ≤ ∥A∥∥B∥.

Question 2:

We will often implement, validate, and test algorithms we discuss in class. Since we have not
really discussed any algorithms yet, we will start by simply exploring the variations in performance
we can observe for something as simple as matrix-matrix multiplication. Implement the following
“algorithms” for computing C = AB:

(a) C(i, j) =
∑

k A(i, k)B(k, j); for this part you can only use built in scalar multiplication

(b) C(i, j) = A(i, :)B(:, j); you may now leverage your chosen languages calls to routines for
computing inner products

(c) C =
∑

k A(:, k)B(k, :); you may now leverage your chosen languages calls to compute outer
products and add matrices

1



(d) C(:, i) = AB(:, i); you may now leverage your chosen languages calls to compute matrix-vector
products.

(e) As a point of comparison we will also use the “built in” routine for computing matrix-matrix
multiplication (e.g., simply writing C = A∗B in Matlab), this is our way of accessing the
routine for matrix-matrix multiplication from BLAS (http://www.netlib.org/blas/).

For all the above algorithms clearly illustrate that your implementation is O
(
n3

)
. Compare and

contrast their performance, and argue about why you believe you might be seeing such differences.

Remarks: Up to constants, we will often work with algorithms whose arithmetic complexity, and
hence the time taken for sufficiently large n, behaves like nq for some non-negative q (e.g., q = 3
for matrix-matrix multiplication). Therefore, think carefully about how you can generate a plot
where the slope of the corresponding line can be used to determine/estimate q. Here is a quick hint:
simply plotting t(n), the time taken, vs n does not have this property and is not an easy way to
distinguish between various complexities. Is something like log(t(n)) vs log(n) a better choice? How
would different exponents manifest in this case? Lastly, for a given n run your timing experiment
multiple times—how consistent are the measurements? What are the potential implications of this
and are there ways to mitigate them?

Question 3:

When asked “is it reasonable to compute e−x via its Taylor expansion” GPT-4 responds:1

Yes, it is reasonable to compute e−x via its Taylor expansion. The Taylor series expan-
sion of e−x is:

e−x = 1− x+
x2

2!
− x3

3!
+

x4

4!
− · · ·

This is an infinite series that converges for all values of x, so you can use it to compute
e−x for any x.

However, be aware of the limitations:

1. Precision: The more terms you include in the series, the more accurate your result
will be. However, if x is very large, you may need to sum a large number of terms to
get an accurate result.

2. Efficiency: If you are computing e−x for very large values of x, it may be more
efficient to use other methods, such as computing ex and then taking its reciprocal.

For small to moderate values of x, computing e−x via its Taylor expansion can be a
reasonable and accurate method.

Let’s ignore the efficiency part for a moment (as there are far better ways to compute e−x from
that standpoint). Assuming we take enough terms, do you agree that for “small to moderate values
of x” using the Taylor expansion provides an “accurate” result for e−x on a computer (using, e.g.,
IEEE double precision)? Let’s say moderate here means on the order of 10 to 100—a reasonable
interpretation. Justify your response.

1See https://chat.openai.com/share/dc160f6d-d73a-4729-94e5-ee16d409573c, and remember that the out-
put is random— you may get a different response if you ask the same question.

2



Question 4:

Is plausible/reasonable to try and construct a backwards stable algorithm for computing the outer
product xyT given vectors x, y ∈ Rn? What about a stable algorithm? Justify your response.

Question 5:

For any square non-singular matrix A, prove that 1/κ2(A) is the relative distance to the nearest
singular matrix to A in the two-norm. In other words, prove that

1

κ2(A)
= min

rank(X)<n

∥A−X∥2
∥A∥2

.

Question 6:

Say we solve a problem f with a stable algorithm f̃ at input x. Prove that an upper bound on
the relative accuracy behaves as O(κ(x)µ), where µ is machine precision and κ(x) is the relative
condition number of f at x.

An ungraded, slightly more challenging question:

Since real matrices can have complex eigenvalues, if we want to discuss the Schur form (i.e., A =
UTU∗ with unitary U and upper triangular T ) of a real matrix that is not symmetric we may have
to consider complex numbers. However, it is useful to consider what we can accomplish with only
real numbers.

For the purposes of this problem you may only use the fact that for any matrix A ∈ Rn×n there
exists at least one scalar λ ∈ C and associated vector v ∈ Cn such that Av = λv, and not assume
the existence of any other matrix factorizations. Prove that for for any matrix A ∈ Rn×n there
exists an orthogonal matrix Q ∈ Rn×n such that

QTAQ =


R11 R12 · · · R1m

0 R22 · · · R2m
...

...
. . .

...
0 0 · · · Rmm


where each Rij is real and Rii is either 1×1 or 2×2 with complex eigenvalues. Such a decomposition
is known are the real Schur decomposition.

3


