Bindel, Fall 2022 Matrix Computations

2022-11-01

1 Algorithms

There are several flavors of symmetric eigenvalue solvers for which there is no
equivalent (stable) nonsymmetric solver. We discuss four algorithmic ideas:
the workhorse QR algorithm that we have already seen, the Jacobi iteration,
divide-and-conquer, and bisection with inverse iteration.

The details of these algorithms are quite technical (particularly the divide-
and-conquer method and bisection with inverse iteration). But even if you
are not planning to focus in numerical linear algebra, you should know a
little about the shape of these algorithms. Why? Three reasons:

 Intellectual fun!
e To make an informed choice of algorithms.

» To re-use building blocks.

2 Symmetric QR

2.1 The eigenvalues of symmetric A

Like the nonsymmetric QR iteration, the symmetric QR iteration involves
an initial reduction, but to a tridiagonal form. This is really the same as
the Hessenberg reduction step; but a symmetric Hessenberg matrix is tridi-
agonal, and we can use that. Similarly, when we perform bulge-chasing, the
intermediate matrices remain symmetric, and so we never have a matrix that
is more than a few elements away from tridiagonal. For the symmetric case,
there is a little difference in how we choose shifts: Wilkinson shifts are fine
since there are only real eigenvalues — no need for the Francis double-shift
strategy. But otherwise, the main difference is that each step of the tridi-
agonal QR iteration maps between representations with O(n) parameters
in O(n) time. Each eigenvalue converges in roughly a constant number of
iterations, so the cost to compute all eigenvalues of a tridiagonal is O(n?).
Compared to the O(n?) cost of reducing to tridiagonal form in the first place,
the cost of solving for the eigenvalues of the tridiagonal is thus quit modest.

Bindel, Fall 2022 Matrix Computations

If we want all the eigenvalues of a sparse matrix, and only want the
eigenvalues, the algorithm is basically the fastest option. But if we want
eigenvectors as well, then the QR iteration is more expensive, costing an
additional O(n?); other methods run faster.

2.2 QR iteration for singular values

Now consider the case of computing the singular values of a matrix A. We
could compute the singular values directly from the eigenvalues of the Gram
matrix ATA (or AAT, or the Golub-Kahan matrix). But the backward er-
ror associated with tridiagonal reduction is proportional to the norm of the
matrix AT A (or the square norm of A) and this can look quite big compared
to the square of the smallest singular values. So rather than work with AT A
explicitly, we prefer to manipulate A in order to run the same algorithm
implicitly.

The first step of the QR iteration for the singular value problem is thus
bidiagonalization; that is, we compute

A=UBV"
where B is an upper bidiagonal matrix. Note that
ATA=VBT'BVT =vTVT,

i.e. B is the Cholesky factor of the tridiagonal matrix A that we would
obtain by tridiagonalization of the Gram matrix AT A. But we can compute
B directly by alternately applying transformations to A from the left and
the right.

After the bidiagonal reduction, we want to do implicit QR steps. As a
shift, we use the square root of the trailing corner element of the tridiagonal
BT B; in terms of B, this is just the norm of the last column:

0= \/ b%—l,n + b%,n

With this shift in hand, we could apply the first step of shifted QR and
complete the process implicitly via bulge chasing in the same way we did
for the nonsymmetric case. In practice, there is an alternate algorithm (the
dgds method) that enjoys extra stability benefits, allowing us to compute the
singular values of B to high relative accuracy.!

LOf course, we usually lose high relative accuracy of the small singular values through

Bindel, Fall 2022 Matrix Computations

3 Jacobi iteration

A Jacobi rotation is a symmetric transformation that diagonalizes a 2 x 2
(sub)matrix:

JTAT = A

In terms of scalars, this means solving

IR R

where ¢ = cos(f) and s = sin(f). A numerically stable method for carrying
out this computation is described in Golub and Van Loan?; we will leave the
details aside for the purposes of these notes.

Given an algorithm for computing Jacobi rotations, the idea of the Jacobi
iteration is to incrementally apply Jacobi rotations to each 2 x 2 principle
minors of A in turn. Each time we apply a Jacobi iteration to rows and
columns k and [, we reduce the sum of squares off the main diagonal by a3,.
The iteration converges quadratically, and typically we can stop after 5-10
sweeps. Each sweep costs O(n?), and has cost comparable to the cost of a
tridiagonalization step before running QR iteration. Hence, Jacobi iteration
is rather slow. On the other hand, it tends to compute the small eigenval-
ues of A much more accurate than competing methods that start with a
tridiagonalization step.

3.1 Divide and conquer

The symmetric QR iteration and the Jacobi iteration are methods that an ap-
propriately motivated student could reasonably code® The divide and conquer
method, on the other hand, is much more numerically subtle. Nonetheless,
the ideas are quite interesting, and it is worth spending a moment describing
the strategy at a high level.

Like the symmetric QR iteration, the divide-and-conquer method is pre-
ceded by a tridiagonalization process. After tridiagonalization, we think of

the initial reduction to bidiagonal — the backward error for that reduction is only small
relative to the norm of A.

20r on Wikipedia!

31 do not really recommend this, but it is not implausible.

Bindel, Fall 2022 Matrix Computations

the tridiagonal matrix as a block 2 x 2 matrix

~ T
T Ty Pepel |70 L3 erl| lew
5€1€£ T22 0 T22 €1 €1 '
where 77, and Ty, are tridiagonal submatrices of the original tridiagonal, and
T1, and Ths are these submatrices with £ subtracted from a corner entry. We

compute the eigendecompositions QﬂTHQH = D, and similarly for T22 by
applying the divide-and-conquer method recursively. We then have

Q'TQ = D + Buu”

where () is a block diagonal orthogonal matrix with diagonal blocks ()1; and
(022, and u consists of the last row of ()1; and the first row of)9y stacked
atop each other.
Assuming we can perform this reduction, we now need to find solutions
to
det(D + Buu’ — XI) = 0.

Without loss of generality, consider the case where u has no zero elements*;
then none of the diagonal entries of D are eigenvalues of A, but we can write
the eigenvalues of A as solutions to

fN) = det(D + puu’ — XI)/det(D — XI) =1+ pu” (D — X),
where we have used the identity (a good homework problem)
det(I + XY7T) =det(I + YT X).

The equation f(\) = 0 is known as a secular equation, and it is a particularly
nice type of rational function. The values d; are poles of f, and there is one
solution to f(A) = 0 between each pair of poles, as well as one that is either
smaller than min d; or greater than maxd;.

We can compute solutions to the secular equation very efficiently using
a variant of Newton’s method. Naively, this iteration would seem to require
O(n) time per step in order to evaluate f and its derivatives at any given
point. However, the evaluation time can be reduced significantly using the
fast multipole method, so that the overall time is close to O(1) per step; as

4If there is a zero element in u, we have a converged eigenvalue on the diagonal, and
can deflate it away

Bindel, Fall 2022 Matrix Computations

a consequence, finding all the solutions to one secular equation takes O(n)
time.

The difficulty in the divide-and-conquer algorithm lies primarily in ob-
taining accurate eigenvector estimates. The problem occurs when eigenval-
ues cluster together; in this case, one tends to compute eigenvector estimates
which look good on their own, but which are not orthogonal to each other.
Fixing this problem while retaining good performance was a technical tour
de force, and we will not even attempt to do it full justice here. We suffice
it to say that the divide-and-conquer algorithm is quite fast if we want all
eigenvalues and eigenvectors, particularly if the eigenvectors are clustered.

4 Bisection with inverse iteration

Our final algorithm for the tridiagonal eigenvalue problem?® is based on Sylvester’s
inertia theorem, which says that congruent matrices have the same inertia.
In particular, that means that if we perform the symmetric factorization

T -0l =LDL",

the number of positive, negative, and zero diagonal entries of D is the same
as the number of eigenvalues of A that are respectively greater than, less
than, and equal to . The bisection algorithm recursively partitions an initial
interval containing all eigenvalues of 1" into smaller intervals that either

o Contain no eigenvalues of A;
« Contain exactly one eigenvalue of A; or
o Are smaller in length than some tolerance.

The center point of each interval containing exactly one eigenvalue is a rea-
sonable estimate for that eigenvalue, good enough to guarantee convergence
of a shift-invert iteration. And this is the bisection algorithm in a nutshell.
The main technical difficulty with the bisection algorithm lies not in the
bisection step (which is remarkably well-behaved even though it involves
an unpivoted factorization of an indefinite matrix), but in the computa-
tion of the eigenvectors. As with the divide-and-conquer scheme, bisection

5As with QR and divide-conquer, the bisection iteration is typically preceded by a
tridiagonal reduction.

Bindel, Fall 2022 Matrix Computations

with inverse iteration tends to yield eigenvector estimates which individu-
ally have small residuals, but which may not be adequately orthogonal for
vectors that correspond to eigenvalues in a cluster. One could use explicit
re-orthogonalization, but the modern “Grail” code (the RRR routines in
LAPACK nomenclature) manages stability in a much more subtle and clever
way. This was the thesis work of Inderjit Dhillon before he turned his energies
to machine learning and data mining. The SVD case was the prize-winning
thesis work of Paul Willems. The fact that the algorithm merits multiple
highly-regarded PhD theses should tell you something of the subtleties in
getting it right.

The Grail code is so-called because it has optimal complexity for com-
puting eigenvectors (given the eigenvalues); to obtain k eigenvectors requires
only O(kn) time. This is generally the fastest way to compute a specified
subset of eigenvectors, and is often the fastest way to compute all eigenvec-
tors.

	Algorithms
	Symmetric QR
	The eigenvalues of symmetric A
	QR iteration for singular values

	Jacobi iteration
	Divide and conquer

	Bisection with inverse iteration

