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1 Building blocks

1.1 Similarity transforms

When we talked about least squares problems, we spent some time discussing
the transformations that preserve the Euclidean norm: orthogonal transfor-
mations. It is worth spending a moment now to give a name to the trans-
formations that preserve the eigenvalue structure of a matrix. These are
similarity transformations.

Suppose A € C"*" is a square matrix, and X € C"*" is invertible. Then
the matrix X AX ! is said to be similar to A, and the mapping from A to
XAX Vs a similarity transformation. If A is the matrix for an operator
from C" onto itself, then X AX ! is the matrix for the same operator in a
different basis. The eigenvalues and the Jordan block structure of a matrix
are preserved under similarity, and the matrix X gives a relationship between
the eigenvectors of A and those of X AX . Note that this goes both ways:
two matrices have the same eigenvalues and Jordan block structure iff they
are similar.

1.2 Symmetric polynomials

Usually, we think of the characteristic polynomial p(z) = det(zI — A) as a
function of z. However, we can also think about it as a function of A. In
particular, we can think of the coefficients in the characteristic polynomial
as functions of A; some of these functions have names, like the determi-
nant (the constant coefficient) and the trace (the coefficient at order d — 1).
Collectively, the coefficients are elementary symmetric polynomials of the
eigenvalues of A — symmetric in this case meaning polynomials in n vari-
ables that are invariant under permutation of the arguments. In fact, the
fundamental theorem of characteristic polynomials says that any symmetric
polynomial in the n eigenvalues (i.e. any function that is the same under
arbitrary permutations of the arguments) can be defined in terms of these
coefficients of the characteristic polynomial. Thus, any nice symmetric func-
tion of the eigenvalues will be a smooth function of the entries of the matrix
A, even if the individual eigenvalues become rather unpleasant.
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1.3 Contour integrals

Complex analysis is not a pre-requisite for this course, and this material
may be considered optional. Nonetheless, it is useful as background both for
understanding the perturbation theory of eigenvalues and for understanding
certain numerical algorithms that we will describe in a couple weeks.

One of the beautiful, fundamental facts about complex analysis is the
Cauchy residue theorem. Suppose 2 C C is a simply connected domain, and
that f : Q@ C C — C is holomorphic (aka analytic) except at finitely many
points &, ..., &,. If I' C € is a rectifiable curve, then

[ 1)z = 2m Y ) Rest£,6),
j=1

where I(I, §;) is the winding number (the number of times I" goes in a positive
direction around ¢;) and Res(f,&;) is the residue at §;.

Closely related is the Cauchy integral theorem, which says that if f :
) — C is holomorphic and I is a positively oriented simple closed curve that
winds once around a, then

f@)= o [ 1

2 Jr 2 —a

dz

and | 1)
Mgy — = [ JE
f(a) = o7 /F = &)(nﬂ) dz.

What if we replace the scalar a by a matrix A? In this case, we end up with
integrals involving the resolvent R(z) = (21 — A)~!, which turns out to be an
extremely useful object. Suppose A is diagonalizable, with A = VAV ™! and
the spectrum of A is inside our curve I'. Then we can consider the integral
one eigen-direction at a time:

F(4) = = / (21 — A f(2) dz

o

v (% /F (21 = A" f(2) dz) p
— ViAWV
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If T only encloses part of the spectrum, then only those eigenvalues inside I’
are represented. In particular, we can use this to compute a spectral projector:

1
Pr=— [ (zI —A)ldz = vW;
YT o F( ) Z i
A inside T
where w} = el V! is a row eigenvector for the eigenvalue \;. The trace of
the spectral projector gives a count of the number of eigenvalues inside of the
contour. We can also compute the sum of the eigenvalues inside the contour

as .
—tr (/ 2(zI — A)7! dz) :
211 r

All of these contour integrals are continuously defined up to the point
where the contour intersects a pole. For example, using what we know about
the distance to singularity, this means that if that if ||E|| < min,er||(2] —
A)7Y|71, then the trace of the spectral projector for A + sE remains con-
tinuously defined for 0 < s < 1 — which means that A and A + E have the
same number of eigenvalues. This is essentially the same argument behind
Rouché’s theorem: if f and f are holomorphic on Q and |f(2)| < |g(2)| for
all z on a simple rectifiable closed contour I', then f and g have the same
number of zeros inside I'.

2 Eigenvalue perturbations

Ale) = [? ﬂ .

The characteristic polynomial of A(e) is p(z) = 2% —2Az+ (A? —¢), which has
roots A & y/e. These eigenvalues are continuous functions of € at € = 0, but
they are not differentiable functions. This is a more general phenomenon: an
O(e) perturbation to a matrix with an eigenvalue with multiplicity m usually
splits the eigenvalue into m distinct eigenvalues, each of which is moved from
the original position by O(e'/™). We expect, then, that it will be difficult to
accurately compute multiple eigenvalues of general nonsymmetric matrices
in floating point. If we are properly suspicious, we should suspect that nearly
multiple eigenvalues are almost as troublesome — and indeed they are. On
the other hand, while we usually lose some accuracy when trying to compute

Consider the matrix
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nearly multiple eigenvalues, we should not always expect to lose all digits of
accuracy.

The next lecture or two will be spent developing the perturbation theory
we will need in order to figure out what we can and cannot expect from our
eigenvalue computations.

2.1 First-order perturbation theory

Suppose A € C™ ™ has a simple! eigenvalue A with corresponding column
eigenvector v and row eigenvector w*. We would like to understand how
A changes under small perturbations to A. If we formally differentiate the
eigenvalue equation Av = v\, we have

(0A)v + A(dv) = (0v)X + v(IN).
If we multiply this equation by w*, we have
w*(0A)v + w*A(dv) = Mw*(dv) + w v(IN).
Note that w*A = Aw™, so that we have
w*(6A)v = w v(dN),
which we rearrange to get

*(6A
(1) 5r = 0y
w*v
This formal derivation of the first-order sensitivity of an eigenvalue only goes
awry if w*v = 0, which we can show is not possible if A is simple.

We can use formula (1) to get a condition number for the eigenvalue \ as
follows:

N _ @AYl _ [wllills 1541 _ 154l

D R Y R e R YR PY
where 6 is the acute angle between the spaces spanned by v and by w.
When this angle is large, very small perturbations can drastically change
the eigenvalue.

L An eigenvalue is simple if it is not multiple.
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3 Gershgorin theory

The first-order perturbation theory outlined in the previous section is very
useful, but it is also useful to consider the effects of finite (rather than in-
finitesimal) perturbations to A. One of our main tools in this consideration
will be Gershgorin’s theorem.

Here is the idea. We know that diagonally dominant matrices are nonsin-
gular, so if A — AI is diagonally dominant, then A cannot be an eigenvalue.
Contraposing this statement, A can be an eigenvalue only if A — AI is not
diagonally dominant. The set of points where A — AI is not diagonally dom-
inant is a union of sets U;G;, where each G is a Gershgorin disk:

Gj = By, (aj;) = {z € C:aj; — 2| < p; where p; =) ’aij‘} .
i#]

Our strategy now, which we will pursue in detail next time, is to use similarity
transforms based on A to make a perturbed matrix A + F look “almost”
diagonal, and then use Gershgorin theory to turn that “almost” diagonality
into bounds on where the eigenvalues can be.

We now argue that we can extract even more information from the Ger-
shgorin disks: we can get counts of how many eigenvalues are in different
parts of the union of Gershgorin disks.

Suppose that G is a connected component of U;G;; in other words, sup-
pose that G = U;esG; for some set of indices S, and that G N Gy = 0 for
k ¢ S. Then the number of eigenvalues of A in G (counting eigenvalues
according to multiplicity) is the same as the side of the index set S.

To sketch the proof, we need to know that eigenvalues are continuous
functions of the matrix entries. Now, for s € [0, 1], define

H(s)= D+ sF

where D is the diagonal part of A and FF = A — D is the off-diagonal part.
The function H(s) is a homotopy that continuously takes us from an easy-
to-analyze diagonal matrix at H(0) = D to the matrix we care about at
H(1) = A. At s =0, we know the eigenvalues of A are the diagonal elements
of A; and if we apply the first part of Gershgorin’s theorem, we see that the
eigenvalues of H(s) always must live inside the union of Gershgorin disks of
A for any 0 < s < 1. So each of the |S]| eigenvalues that start off in the
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connected component G at H(0) = D can move around continuously within
G as we move the matrix continuously to H(1) = A, but they cannot “jump”
discontinuously across the gap between G and any of the other Gershgorin
disks. So at s = 1, there will still be |S]| eigenvalues of H(1) = A inside G.

3.1 Perturbing Gershgorin

Now, let us consider the relation between the Gershgorin disks for a matrix A
and a matrix A = A+ F. It is straightforward to write down the Gershgorin
disks G; for A:

Gj = By, (ay;) = {z € C: |ag; +ej; — 2| < p;} where p; =Y |ay; + fyl.
i#]
Note that |a;; + ej; — z| > |aj; — 2| — | fj;] and |ag; + fi;| < lag;| + |fi;], so

(2) G C By, iilay) = {Z €C:laj—2 <pi+ ) |fij|} :

We can simplify this expression even further if we are willing to expand the
regions a bit:

(3) G C B, rp (ajy).

3.2 The Bauer-Fike theorem

We now apply Gershgorin theory together with a carefully chosen similarity
to prove a bound on the eigenvalues of A+ F where F' is a finite perturbation.
This will lead us to the Bauer-Fike theorem.

The basic idea is as follows. Suppose that A is a diagonalizable matrix,
so that there is a complete basis of column eigenvectors V' such that

VAV = A
Then we A + F has the same eigenvalues as
VY A+F)W=A+V'FV =A+F.

Now, consider the Gershgorin disks for A + F. The crude bound (3) tells us
that all the eigenvalues live in the regions

U@w Uﬁnnm
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This bound really is crude, though; it gives us disks of the same radius around
all the eigenvalues \; of A, regardless of the conditioning of those eigenvalues.
Let’s see if we can do better with the sharper bound (2).

To use (2), we need to bound the absolute column sums of F. Let e
represent the vector of all ones, and let e; be the jth column of the identity
matrix; then the jth absolute column sums of F is O; = eT|F|e]~, which we
can bound as ¢; < e’|V7||F||V|e;. Now, note that we are free to choose
the normalization of the eigenvector V; let us choose the normalization so
that each row of W* = V~!. Recall that we defined the angle 6, by
|[wiv|

cos(f;) = —~~—
©3) = TosTallog o’

where w; and v; are the jth row and column eigenvectors; so if we choose
|wjll2 = 1 and wiv; = 1 (so W* = V'), we must have [[v;]l = sec(6;).
Therefore, |||V ]e;]]2 = sec(6;). Now, note that e’ |V "] is a sum of n rows of
Euclidean length 1, so |||V ™!|||la < n. Thus, we have

¢; < nl|F||2sec(0;).

Putting this bound on the columns of F together with (2), we have the
Bauer-Fike theorem.

Theorem 1 Suppose A € C"*" is diagonalizable with eigenvalues A1, ..., \,.
Then all the eigenvalues of A+ F are in the region

U Byl sec9;) (Af),
J

where 8; is the acute angle between the row and column eigenvectors for
Aj, and any connected component G of this region that contains ezactly m
eigenvalues of A will also contain exactly m eigenvalues of A+ F.
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